1. (a) A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate
(i) the energy supplied by the battery
energy = J
(ii) the charge passing through the lamp

> charge =
\qquad unit \qquad
(iii) the total number of electrons passing through the lamp.
number of electrons =
\qquad
(b) The wires connecting the 36 W lamp to the 12 V battery are made of copper. They have a cross-sectional area of $1.1 \times 10^{-7} \mathrm{~m}^{2}$. The current in the wire is 3.0 A. The number n of free electrons per m^{3} for copper is $8.0 \times 10^{28} \mathrm{~m}^{-3}$.
(i) Describe what is meant by the term mean drift velocity of the electrons in the wire
\qquad
\qquad
\qquad
(ii) Calculate the mean drift velocity v of the electrons in this wire.

$$
v=. . \ldots . ~ \mathrm{~m} \mathrm{~s}^{-1}
$$

2. (a) Name the charge carriers responsible for electric current in a metal and in an electrolyte.
\qquad
\qquad
(b)

The diagram above shows a copper rod of length $I=0.080 \mathrm{~m}$, having a crosssectional area $A=3.0 \times 10^{-4} \mathrm{~m}^{2}$.

The resistivity of copper is $1.7 \times 10^{-8} \Omega \mathrm{~m}$.

The copper rod is used to transmit large currents. A charge of 650 C passes along the rod every 5.0 s . Calculate

1. the current in the rod
\qquad
A
2. the total number of electrons passing any point in the rod per second.
number =
\qquad
3. The diagram below shows an electrical circuit.

The battery has negligible internal resistance.
(a) Show that the current I is 25 mA .
(b) Calculate the potential difference (p.d.) across the resistor of resistance 120Ω.
p.d. = V
(c) Explain why a voltmeter connected between points \mathbf{A} and \mathbf{B} will read 0 V .
\qquad
\qquad
\qquad
4. The diagram below shows a lightning strike between a storm cloud and the ground.

(a) State the direction of the magnetic field at point \mathbf{P} due only to the lightning strike.
\qquad
(b) The current in the lightning strike is 7800 A . The strike lasts for a time of 230 ms . Calculate

1. the charge flowing between the cloud and the ground
\qquad C
2. the number of electrons transferred to the ground.
number $=$ \qquad
3. A small radio receiver uses a battery that is capable of delivering a constant current of 40 mA for a period of 5.0 hours.
(a) Calculate the total charge delivered by the battery.
charge $=$ \qquad unit \qquad
(b) Below is the graph of current against time for a different battery.

Explain whether the charge delivered by this battery is the same as, greater than or less than your answer to (a).
\qquad
\qquad
6. The figure below shows an incomplete circuit with a battery and a resistance wire made of a material of resistivity ρ.

(a) Complete the circuit of the figure and show how you would connect suitable meters to determine the current in the resistance wire and the potential difference across the resistance wire.
(b) In this question, two marks are available for the quality of written communication.

Use your answer to (a) to describe an experiment to determine the resistivity ρ of the material of the resistance wire. Your description should include

- the measurements taken
- the instruments used to take the measurements
- how the measurements are used to determine the resistivity of the material.
\qquad

7. State the SI unit for electrical charge.
\qquad
8. The figure below shows an arrangement of three - filament lamps used to illuminate a room.

(a) Name the arrangement in which the three lamps are connected.
\qquad
(b) Each lamp has resistance 8.0Ω when operating at 12 V .

Calculate
(i) the current drawn by each lamp
current =
\qquad A
(ii) the power dissipated by each lamp
power =W
(iii) the total resistance of the lamps as connected in the picture above.

$$
\text { resistence }=\text {.. } \Omega
$$

(iv) the total energy transformed by the three lamps in kilowatt hour when operated for 12 hours.

$$
\text { energy }=\text {.......................... kW h }
$$

(c) One of the lamps is replaced by another lamp that also operates at 12 V but has a smaller resistance than 8.0Ω. State and explain how its brightness will compare with one of the other two remaining lamps.
\qquad
\qquad
\qquad
\qquad
9. State Kirchhoff's first law.
\qquad
\qquad
\qquad

1. (a) (i) $\mathrm{E}=(\mathrm{Pt}=) 36 \times 3600$
allow $I=3 A$ and $E=V I t$, etc.
C1

$$
\begin{aligned}
& =1.3 \times 10^{5}(\mathrm{~J}) \\
& \quad \text { accept } 129600(\mathrm{~J})
\end{aligned}
$$

(ii) $\mathrm{Q}=\mathrm{E} / \mathrm{V}=1.3 \times 10^{5} / 12$ or $\mathrm{Q}=\mathrm{It}=3 \times 3600$
$\boldsymbol{e c f}(a)(i)$

$$
\begin{equation*}
=1.1 \times 10^{4} \tag{C1}
\end{equation*}
$$

$$
\text { accept } 1.08 \times 10^{4}
$$

unit: C allow A s not $J V^{-1}$
(iii) $\mathrm{Q} / \mathrm{e}=1.1 \times 10^{4} / 1.6 \times 10^{-19}$ $\operatorname{ecf}(a)(i i)$

$$
\begin{equation*}
=6.9 \times 10^{22} \tag{C1}
\end{equation*}
$$

$$
\text { accept } 6.75 \text { or } 6.8 \times 10^{22} \text { using } 10800
$$

(b) (i) no mark for quoting formula
the average displacement/distance travelled of the electrons along the wire per second;
allow in one second
(because) they collide constantly/in a short distance with the lattice/AW
max 2 marks from 3 marking points
(ii) \quad select $\mathrm{I}=\mathrm{nAev}(=3.0 \mathrm{~A})$

1 mark for correct formula

C1

C1

A1
2. (a) (i) Electrons in a metal B1
(ii) Ion in an electrolyte
(b) 1. $I=Q / t / I=650 / 5$ $I=130(\mathrm{~A})$
2. $n=I / e=130 / 1.6 \times 10^{-19}$ C1
$n=8.1 \times 1020$
3. (a) $R=R_{1}+R_{2} / R=200+120 / R=320$
current $=\frac{8.0}{320}$
current $=2.5 \times 10^{-2}(\mathrm{~A})$
(b) $\quad V=25 \times 10^{-3} \times 120 / V=\frac{120}{120+200} \times 8.0$
$V=3.0(\mathrm{~V}) \quad$ (Possible ecf)
B1
(c) p.d. across the $360(\Omega)$ resistor $=$ p.d. across the $120(\Omega)$ resistor / There is no current between \mathbf{A} and $\mathbf{B} /$ in the voltmeter B1 (Allow ' A \& B have same voltage' - BOD)

The p.d. calculated across 360Ω resistor is shown to be $3.0 \mathrm{~V} /$ The ratio of the resistances of the resistors is shown to be the same.

B1
4. (a) Into the page

B1
(b) $I=\frac{\Delta Q}{\Delta t} \quad$ (Allow other subject, with or without Δ)
(charge $=$) $7800 \times 0.23 \quad \mathrm{C} 1$
$1.794 \times 10^{3} \approx 1.8 \times 10^{3}(\mathrm{C}) \quad$ (Ignore minus sign) A1
$\left(1.8 \times 10^{6}(\mathrm{C})\right.$ scores $\left.2 / 3\right)$
(c) $\quad($ number $=) \frac{1.79 \times 10^{3}}{e} \quad$ (Possible ecf)
$($ number $=) 1.12 \times 10^{22} \approx 1.1 \times 10^{22}$
A1
5.
$\begin{array}{ll}\text { (a) } \begin{array}{ll}Q=I t \quad \text { (Allow any subject) } & \text { C1 } \\ Q=0.040 \times 5.0 \times 60 \times 60 \backslash \quad Q=0.040 \times 1.8 \times 10^{4} \\ \text { charge }=720\end{array} & \text { A1 } \\ \begin{array}{l}\left(40 \times 5=200 \text { or } 0.040 \times 5=0.02 \text { or } 40 \times 1.8 \times 10^{4}=7.2 \times 10^{5} \text { scores 1/2) }\right. \\ \text { coulomb } \backslash \mathrm{C} \backslash \mathrm{As}\end{array} & \text { B1 } \\ \text { (b) } \begin{array}{l}\text { It is less because the average current is less } \backslash \text { area (under graph) is less } \backslash \\ \text { current 'drops' after 3 hours. }\end{array} & \text { B1 }\end{array}$
$\begin{array}{lll}\text { 6. (a) Ammeter in series } & & \text { B1 } \\ & \text { (across the ends of the wire) } & \text { B1 }\end{array}$
(b) $\begin{array}{ll}\rho=\frac{R A}{L} & \text { (Allow any subject) M1 }\end{array}$
$R=$ resistance, $L=$ length and $A=$ (cross-sectional) area ($\rho=$ resistivity is given in the question)

Any four from:
Measure the length of the wire using a ruler B1

Measure the diameter of the wire B1 using a micrometer \backslash vernier (calliper) B1

Calculate the (cross-sectional) area using $\mathrm{A}=\pi \mathrm{r} 2 \backslash \mathrm{~A}=\pi \mathrm{d} 2 / 4$ B1

Calculate the resistance (of the wire) using $R=\frac{V}{I}$ B1

Repeat experiment for different lengths \backslash current \backslash voltage \backslash diameter (to get an average)

B1
Plot a graph of R against L . The gradient $=\rho / \mathrm{A}$. B1
(Or Plot V against I. The gradient is $\rho \mathrm{L} / \mathrm{A}$)
Structure and organisation. B1
Spelling and grammar. B1

QWC

The answer must involve physics, which attempts to answer the question.

Structure and organisation

Award this mark if the whole answer is well structured.

Spelling and Grammar mark

More than two spelling mistakes or more than two grammatical errors means the SPAG mark is lost.
7. Coulomb / C B1
8. (a) Parallel B1
(b) \quad (i) $\quad I=\frac{12}{8.0}$

$$
\text { current }=1.5(\mathrm{~A})
$$

(ii) $\quad P=\frac{V^{2}}{R} \quad / \quad P=I V \quad P=I^{2} R$

$$
\mathrm{C} 1
$$

$$
P=\frac{12^{2}}{8} \quad / \quad P=1.5 \times 12 \quad P 1.5^{2} \times 8.0 \quad \text { (Possible ecf) } \quad \text { C1 }
$$

$$
\begin{equation*}
\text { power }=18(\mathrm{~W}) \tag{A1}
\end{equation*}
$$

(iii) $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\left(\frac{1}{R_{3}}\right) \quad / \quad \frac{1}{R}=\frac{1}{8}+\frac{1}{8}+\frac{1}{8}$
$\frac{1}{R}=3 \times \frac{1}{8}$
C1
resistance $=2.67 \approx 2.7(\Omega)($ Allow answer expressed as $8 / 3)$
A1 (0.375 or $3 / 8$ scores $2 / 3$)
(iv) energy $=0.018 \times 12 \times 3$

C1
energy $=0.648 \approx 0.65(\mathrm{~kW} \mathrm{~h}) \quad$ (Possible ecf)
(0.22 (kW h) scores $1 / 2$)
(648 (kW h) scores 1/2)
$\left(2.3 \times 10^{6}(\mathrm{~J})\right.$ scores $\left.1 / 2\right)$
(c) It will be brighter B1

The current is larger / correct reference to: $P \propto 1 / R \quad B 1$
9. The sum of the currents entering a point / junction is equal to the sum of the currents leaving (the same point) Or 'Algebraic sum of currents at a point $=0$ ' (-1 for the omission of 'sum' and -1 for omission of 'point'/ 'junction')
(Do not allow $I_{1}+I_{2}=I_{3}+I_{4}$ unless fully explained)

