1 (a) The following electrical quantities are often used when analysing circuits. Draw a straight line from each quantity on the left-hand side to its correct units on the right-hand side.

potential difference	Cs^{-1}
resistance	JC^{-1}
power	VA^{-1}
current	Js^{-1}

(b) Fig. 3.1 shows a battery of e.m.f. 6.0V and negligible internal resistance connected in series with a thermistor and a 560Ω resistor.

Fig. 3.1
The voltmeter across the resistor has infinite resistance.
(i) The reading on the voltmeter is 2.4 V . Calculate the resistance R_{T} of the thermistor.

$$
R_{\mathrm{T}}=
$$

(ii) Calculate the current in the circuit.
(c) The variation of resistance with temperature for this thermistor is shown in the graph of Fig. 3.2.

Fig. 3.2
(i) Use the graph to determine the temperature of the thermistor when its resistance is 800Ω.

$$
\text { temperature = ... }{ }^{\circ} \mathrm{C} \text { [1] }
$$

(ii) State and explain, without calculation, how the reading of the voltmeter in Fig. 3.1 will change as the temperature of the thermistor increases to $80^{\circ} \mathrm{C}$.
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) The circuit of Fig. 3.1 can be used as a temperature sensor. Temperature sensors are used in the kitchen to control the internal temperatures of ovens (typically $200^{\circ} \mathrm{C}$) and refrigerators (typically $4^{\circ} \mathrm{C}$). Use the graph of Fig. 3.2 to suggest in which device this sensor would be more suitable.

In your answer you should link the information from the graph to the working of the sensor.
\qquad
\qquad
\qquad
\qquad
\qquad

2 (a) Define the resistivity ρ of a metal wire.
\qquad
\qquad
\qquad
(b) In the UK the National Grid is used to transmit electric power. Each pylon supports 24 cables. See Fig. 2.1. Each cable consists of 38 strands of aluminium. See Fig. 2.2.

Fig. 2.1

Fig. 2.2
(i) The resistance per km of a cable is $0.052 \Omega \mathrm{~km}^{-1}$. Explain why the resistance per km of a single strand is approximately $2.0 \Omega \mathrm{~km}^{-1}$.
\qquad
\qquad
\qquad
(ii) The resistivity of aluminium is $2.6 \times 10^{-8} \Omega \mathrm{~m}$. Calculate the cross-sectional area A of a single strand of the cable.

$$
A=
$$

(c) The input voltage to each cable in Fig. 2.1 is 400 kV . The cable carries a current of 440 A . Calculate
(i) the input power to one cable

> input power =
(ii) the number of cables required to transmit the power from a 2000 MW power station

$$
\begin{equation*}
\text { number of cables }= \tag{1}
\end{equation*}
$$

(iii) the power lost as heat per km of cable
lost power =
(iv) the percentage of the input power that is available at a distance of 100 km from the power station.
percentage of power $=$ \% [2]
[Total: 14]

3 Fig. 3.1 shows a circuit containing a battery of e.m.f. 12 V , two resistors, a light-dependent resistor (LDR), an ammeter and a switch \mathbf{S}. The battery has negligible internal resistance.

Fig. 3.1
(a) When the switch \mathbf{S} is open, show that the potential difference between the points \mathbf{X} and \mathbf{Y} is 7.2V.
(b) The switch \mathbf{S} is now closed. Describe and explain the change to each of the following when the intensity of light falling on the LDR is increased:
(i) the ammeter reading
\qquad
\qquad
\qquad
(ii) the potential difference across $\mathbf{X Y}$.
\qquad
\qquad
\qquad

4 This question is about the use of a thermistor fitted inside a domestic oven as a temperature sensor in a potential divider circuit.

Fig. 2.1 shows the potential divider circuit in which the component $\mathbf{R}_{\mathbf{2}}$ is connected in parallel to the input of an electronic circuit that switches the mains supply to the heating element in the oven on or off.

Fig. 2.1
(a) $\mathbf{R}_{\mathbf{1}}$ is a variable resistor and $\mathbf{R}_{\mathbf{2}}$ is the thermistor. The circuit symbols for $\mathbf{R}_{\mathbf{1}}$ and $\mathbf{R}_{\mathbf{2}}$ are incomplete. Complete these circuit symbols on Fig. 2.1.
(b) It is required that the p.d. across the thermistor $\mathbf{R}_{\mathbf{2}}$ is 7.0 V when at a temperature of $180^{\circ} \mathrm{C}$. The variation of resistance with temperature for $\mathbf{R}_{\mathbf{2}}$ is shown in Fig. 2.2.

Fig. 2.2
(i) Use Fig. 2.2 to determine the resistance of $\mathbf{R}_{\mathbf{2}}$ at a temperature of $180^{\circ} \mathrm{C}$.
(ii) When the temperature is $180^{\circ} \mathrm{C}$ the p.d. across $\mathbf{R}_{\mathbf{2}}$ is 7.0 V . Calculate the current in $\mathbf{R}_{\mathbf{2}}$.
current = .. A [1]
(iii) The electronic circuit draws a negligible current. Show that the resistance of the variable resistor \mathbf{R}_{1} must be about 350Ω.
(iv) $\mathbf{R}_{\mathbf{2}}$ is heated slowly. Show that the p.d. across $\mathbf{R}_{\mathbf{2}}$ must fall to about 5.0 V when the temperature of $\mathbf{R}_{\mathbf{2}}$ reaches $200^{\circ} \mathrm{C}$.
(c) The thermistor $\mathbf{R}_{\mathbf{2}}$ is fitted inside the oven. When the p.d. across $\mathbf{R}_{\mathbf{2}}$ falls to 5.0 V the oven heater switches off. The oven cools until the p.d. across $\mathbf{R}_{\mathbf{2}}$ rises to 7.0 V when the heater switches on again.
$\mathbf{R}_{\mathbf{1}}$ is adjusted to 250Ω. Calculate the temperatures at which the oven heater is switched on and off.
temperature on ${ }^{\circ} \mathrm{C}$
temperature off ${ }^{\circ} \mathrm{C}$ [4]

Question			Expected Answers	Marks	Additional Guidance
2					
	a		$\begin{aligned} & \rho=\mathrm{RA} / \mathrm{l} \\ & \text { with terms defined } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	full word definition gains both marks allow A is area as adequate; no unit cubes
	b	i	either the cable consists of (38) strands in parallel; or the area of the cable is 38 times the area of a strand or vice versa; so the resistance of 1 strand is 38 times bigger, (i.e. $1.98 \Omega \mathrm{~km}^{-1}$) or the resistance is inversely proportional to the area	B1 B1	$\max 1$ mark for $38 \times 0.052=1.98$ with no further explanation allow with either and or allow only with or
		ii	$\begin{aligned} & A=\rho I / R=2.6 \times 10^{-8} \times 1000 / 2.0 \\ & =1.3 \times 10^{-5}\left(\mathrm{~m}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	$\begin{aligned} & \text { allow } 1 \text { mark max. for } R=0.052 \text { giving } \\ & A=5.0 \times 10^{-4}\left(\mathrm{~m}^{2}\right) \\ & \text { give } 1 \text { mark } \text { max. for } 1.3 \times 10^{-8}\left(\mathrm{~m}^{2}\right) \end{aligned}$
	c	i	$\begin{aligned} & \mathrm{P}=\mathrm{VI}=400 \times 10^{3} \times 440 \\ & =1.8 \times 10^{8}(\mathrm{~W}) \text { or } 180 \mathrm{M}(\mathrm{~W}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	$\mathrm{P}=\mathrm{VI}$ not adequate for first mark expect 176
		ii	2000/176 = 11.4 so 12 required	B1	ecf(c)(i); using 180 gives 11.1
		iii	$\begin{aligned} & \mathrm{P}=\mathrm{I}^{2} \mathrm{R} \\ & =440^{2} \times 0.052 \\ & =1.0 \times 10^{4} \mathrm{~W}\left(\mathrm{~km}^{-1}\right) \text { or } 10 \mathrm{~kW}\left(\mathrm{~km}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	$\begin{aligned} & \text { accept power/cable }=2000 / 12=167 \mathrm{MW} \\ & \mathrm{I}=167 \mathrm{M} / 400 \mathrm{k}=417 \mathrm{~A} \\ & \mathrm{P}=417^{2} \times 0.052=9.0(3) \mathrm{kW}\left(\mathrm{~km}^{-1}\right) \\ & \text { N.B. answer mark includes consistent unit } \\ & \hline \end{aligned}$
		iv	$\begin{aligned} & \text { power lost per cable }=10 \mathrm{k} \times 100 \times 12=12.0 \mathrm{MW} \\ & \text { fraction remaining }=(2000-12) / 2000=0.994 \times 100=0.994 \text { so } 99.4 \% \\ & \text { or power lost per strand }=10 \mathrm{k} \times 100=1.0 \mathrm{MW} \\ & \text { fraction remaining }=(176-1) / 176=0.994 \mathrm{so} 99.4 \% \end{aligned}$	$\begin{aligned} & \hline \text { C1 } \\ & \text { A1 } \end{aligned}$	ecf(c)(ii)(iii) allow second mark for 'correct' answer as fraction not percentage with BOD sign allow 1 mark max. if give correct \% lost given rather than \% remaining allow 1 mark max. for $100 \times(2000-1) / 2000=99.95 \%$
			Total question 2	14	

Question			Expected Answers	Marks	Additional Guidance
$\mathbf{3}$					
	\mathbf{a}		resistors in series add to 20Ω and current is 0.60 A so p.d. across XY is $0.60 \times 12(=7.2 \mathrm{~V})$	B 1 B 1	accept potential divider stated or formula gives $(12 / 20) \times 12 \mathrm{~V}(=7.2) \mathrm{V}$
	b	\mathbf{i}	the resistance of the LDR decreases (so total resistance in circuit decreases) and current increases	M1 A1	
		ii	resistance of LDR and 12Ω (in parallel)/across XY decreases so has smaller share of supply p.d. (and p.d. across XY falls)	B1 B1	alternative I increases so p.d. across 8.0Ω increases; so p.d. across XY falls
			Total question 3	$\mathbf{6}$	

Question		Answer	M	Guidance	
4				B1	
	a		B1		

