Energy types and transfers practise questions and answers

Name:

Class:

Date:
Time: $\quad 50$ minutes

Marks:
50 marks

Your score:

What went
well:

How to
improve:

Q1.

The image below shows a student before and after a bungee jump.
The bungee cord has an unstretched length of 20 m .

(a) For safety reasons, it is important that the bungee cord used is appropriate for the student's weight.

Give two reasons why.

1. \qquad
2. \qquad
\qquad
(b) The student jumps off the bridge.

Complete the sentences to describe the energy transfers.
Use answers from the box.

Before the student jumps from the bridge he has a store of
\qquad energy.
When he is falling, the student's store of \qquad
energy increases.
When the bungee cord is stretched, the cord stores energy as
\qquad energy.
(c) At the lowest point in the jump when the student is stationary, the extension of the bungee cord is 35 metres.

The bungee cord behaves like a spring with a spring constant of $40 \mathrm{~N} / \mathrm{m}$.
Calculate the energy stored in the stretched bungee cord.
Use the correct equation from the Physics Equations Sheet.
\qquad
\qquad
\qquad
Energy = \qquad J
(Total 7 marks)

Q2.
Figure 1 shows the forces acting on a model air-powered rocket just after it has been launched vertically upwards. The rocket will continue travelling vertically upwards to a maximum height where it slows to a speed of $0 \mathrm{~m} / \mathrm{s}$ and falls back to Earth

Figure 1

(a) The speed of the rocket just after being launched is $12 \mathrm{~m} / \mathrm{s}$. The mass of the rocket is 0.05 kg .
(i) Calculate the kinetic energy of the rocket just after being launched.
\qquad
\qquad
\qquad
Kinetic energy = \qquad J
(ii) As the rocket moves upwards, it gains gravitational potential energy.

State the maximum gravitational potential energy gained by the rocket.
Ignore the effect of air resistance.
Maximum gravitational potential energy $=$ \qquad J
(iii) Calculate the maximum height the rocket will reach.

Ignore the effect of air resistance.
Gravitational field strength $=10 \mathrm{~N} / \mathrm{kg}$.
\qquad
\qquad
\qquad
Maximum height $=$ \qquad m

Q3.
Figure 1 shows a cyclist riding along a straight, level road at a constant speed.
Figure 1

(a) Complete the sentences.

As the cyclist rides along the road, the \qquad energy store
in the cyclist's body decreases.

The speed of the cyclist is constant when the work done by the cyclist is
\qquad the work done against air resistance.

Figure 2 shows how the speed changes as the power output of the cyclist changes.
Figure 2

(b) Write down the equation that links power, time and work done.
\qquad
(c) Calculate the work done by the cyclist when his power output is 200 W for 1800 seconds.
\qquad
\qquad
\qquad
\qquad
Work done = \qquad J
(d) Calculate the percentage increase in speed of the cyclist when the power output changes from 200 W to 300 W .
\qquad
\qquad
\qquad
\qquad
Percentage increase in speed $=$ \qquad
(e) The maximum speed this cyclist can travel on a level road is $14 \mathrm{~m} / \mathrm{s}$.

How does cycling uphill affect the maximum speed of this cyclist?
Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q4.
The image shows a battery-powered drone.

(a) Complete the sentences.

Choose the answers from the box.

chemical		
gravitational potential	kinetic	nuclear

As the drone accelerates upwards
its \qquad energy increases
and its \qquad energy increases.

The \qquad energy store
of the battery decreases.
(b) In the USA, drones are not allowed to be flown too high above the ground.

Suggest one possible risk of flying a drone too high above the ground.
\qquad
\qquad
(c) Write down the equation that links energy transferred, power and time.
\qquad
(d) The drone can fly for 25 minutes before the battery needs recharging.

The power output of the battery is 65.0 W
Calculate the maximum energy stored by the battery.
\qquad
\qquad
Maximum energy = \qquad joules

Q5.
The appliances shown below transfer electrical energy to other types of energy.

(a) The vacuum cleaner is designed to transfer electrical energy to kinetic energy.

Three more of the appliances are also designed to transfer electrical energy to kinetic energy. Which three?

Draw a ring around each correct appliance.
(b) Which two of the following statements are true?

Tick (\checkmark) two boxes.

Appliances only transfer part of the energy usefully.

The energy transferred by appliances will be destroyed.

The energy transferred by appliances makes the surroundings warmer. \square

The energy output from an appliance is bigger than the energy input. \square

Q6.
The diagram shows the energy transformations produced by a TV.

(a) Use words from the diagram to complete the following sentence.

The TV is designed to transform \qquad energy into
light and \qquad energy.
(b) Which one of the following statements is false?

Put a tick (\checkmark^{\prime}) in the box next to the false statement.
The energy transformed by the TV makes the surroundings warmer.

The energy transformed by the TV becomes spread out. \square
The energy transformed by the TV will be destroyed. \square
(c) Two different makes of television, \mathbf{A} and \mathbf{B}, transform energy at the same rate. Television \mathbf{A} wastes less energy than television \mathbf{B}.

Complete the following sentence by drawing a ring around the correct line in the box.

Q7.
Complete the following sentences.
A TV set is designed to transfer electrical energy into \qquad energy and \qquad energy.

A hair dryer is designed to transfer electrical energy into \qquad energy and \qquad energy.

Q8.
A gas burner is used to heat some water in a pan.

Of the energy released by the burning gas by the time the water starts to boil:
60% has been transferred to the water.
20% has been transferred to the surrounding air.
13% has been transferred to the pan.
7% has been transferred to the gas burner itself.
(a) Use the above information to complete the pie-chart.

(b) Some of the energy released by the burning gas is wasted.
(i) What happens to this wasted energy?
\qquad
\qquad
(2)
(ii) What percentage (\%) of the energy from the gas is wasted? Answer: \qquad \%

Mark schemes

Q1.

(a) any two from:

- bungee rope may snap
- rope may extend too much
- student may land in the river
(b) gravitational potential
correct order only
kinetic
elastic potential
(c) $1 / 2 \times 40 \times 35^{2}$

24500 (J)
accept 25000 (J) (2 significant figures)
allow 24500 (J) with no working shown for 2 marks

Q2.
(a) (i) 3.6
allow 1 mark for correct substitution i.e.
$1 / 2 \times 0.05 \times 12^{2}$ provided no subsequent step
(ii) 3.6 or their (i)
(iii) 7.2
or
their (ii) $\div 0.5$ correctly calculated
allow 1 mark for correct substitution i.e.
3.6 or their (ii) $=0.05 \times 10 \times h$
(iv) B

Q3.
(a) chemical
equal to
allow the same as
in this order only
(b) power $=\frac{\text { work done }}{\text { time }}$
allow $P=\frac{W}{t}$
(c) $200=\frac{W}{1800}$
$W=200 \times 1800$
$\mathrm{W}=360000(\mathrm{~J})$
1
an answer of 360000 (J) scores 3 marks
(d) $11-9.5=1.5(\mathrm{~m} / \mathrm{s})$
allow a change in speed between 1.2 and $1.5(\mathrm{~m} / \mathrm{s})$
$\left(\frac{1.5}{9.5}\right) \times 100=15.8(\%)$
allow an answer consistent with their change in speed an answer of 16 (\%) scores 2 marks
an answer that rounds to 15.8 (\%) scores 2 marks
(e) maximum speed is lower
because maximum power output of cyclist is constant
allow maximum force on pedals is constant
(but) additional work is done (against gravity)
do not accept additional work done against friction or air resistance

or

gravitational potential energy (of cyclist) is increased

Q4.
(a) gravitational potential
kinetic
chemical
(b) flying drones may damage aircraft
or
falling drones may injure people
or
damage buildings / vehicles
allow any sensible suggestion of a hazard caused by a flying / falling drone
(c) energy transferred $=$ power \times time
allow $E=P t$
(d) $t=25 \times 60=1500(s)$
$E=65 \times 1500$
$E=97500(J)$
an answer of 97500 (J) scores 3 marks
allow 2 marks for an answer of 1625 (J)
washing machine
four circled including correct three scores 1 mark five circled scores zero
(b) Appliances only transfer part of the energy usefully

The energy transferred by appliances makes the surroundings warmer

Q6.
(a) electrical
sound
correct order only
(b) the energy transformed by the TV will be destroyed
(c) a higher efficiency than

Q7.
light;
sound;
heat;
kinetic/movement
for 1 mark each

Q8.
(a) 60% sector correct other two sectors closer to 13:7 than 12:8 or 14:6 sectors correctly labelled (w.r.t rank order of size) each for 1 mark
(b) (i) ideas that wasted energy is transferred to surrounding air pan stove
is converted to another/correctly named energy form any 2 for 1 mark each
(ii) 40
for 1 mark

