Questions on Work \& Energy

1. Describe one example where elastic potential energy is stored.
\qquad
2. The figure below shows two forces, each of magnitude 1200 N , acting on the edge of a disc of radius 0.20 m .

(a) (i) Define the torque of a couple.
\qquad
\qquad
(ii) Calculate the torque produced by these forces.
torque =N m
(b) This torque is needed to overcome friction and keep the disc rotating at a constant rate.
(i) Show that the work done by the two forces when the disc rotates one complete revolution is about 3000 J .
(ii) Calculate the power required to keep the disc rotating at 40 revolutions per second.
power =
\qquad W
3. Fig. 1 shows part of the force-extension graph for a spring. The spring obeys Hooke's law for forces up to 5.0 N .

Fig. 1
(a) Calculate the extension produced by a force of 5.0 N .
extension =
\qquad mm
(b) Fig. 2 shows a second identical spring that has been put in parallel with the first spring. A force of 5.0 N is applied to this combination of springs.

Fig. 2
For the arrangement shown in Fig. 2, calculate
(i) the extension of each spring
extension = mm
(ii) the total strain energy stored in the springs.
strain energy = J
(c) The Young modulus of the wire used in the springs is $2.0 \times 10^{11} \mathrm{~Pa}$. Each spring is made from a straight wire of length 0.40 m and cross-sectional area $2.0 \times 10^{-7} \mathrm{~m}^{2}$. Calculate the extension produced when a force of 5.0 N is applied to this straight wire.
extension =
(d) Describe and explain, without further calculations, the difference in the strain energies stored in the straight wire and in the spring when a 5.0 N force is applied to each.
\qquad
\qquad
\qquad
4. The figure below illustrates a conveyor belt for transporting young children up a snow-covered bank so that they can ski back down.

A child of mass 20 kg travels up the conveyor belt at a constant speed. The distance travelled up the slope is 24 m and the time taken is 55 s . The vertical height climbed in this time is 4.0 m .
(a) For the child on the conveyor belt, calculate
(i) her speed

$$
\text { speed }=\text {............................. } \mathrm{m} \mathrm{~s}^{-1}
$$

(ii) her kinetic energy
kinetic energy = J
(iii) the increase in her potential energy for the complete journey up the slope. potential energy $=$ \qquad J
(b) (i) The conveyor belt is designed to take a maximum of 15 children at any one time. Calculate the power needed to lift 15 children of average mass 20 kg through a height of 4.0 m in 55 s .
power = W
(ii) The belt is driven by an electric motor. State two reasons why the motor needs a greater output power than that calculated in (b)(i).
\qquad
\qquad
\qquad
\qquad
5. State the principle of conservation of energy.
\qquad
\qquad
6. The figure below shows a violin.

Two of the wires used on the violin, labelled \mathbf{A} and \mathbf{G} are made of steel. The two wires are both 500 mm long between the pegs and support. The 500 mm length of wire labelled \mathbf{G} has a mass of $2.0 \times 10^{-3} \mathrm{~kg}$. The density of steel is $7.8 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$.
(i) Show that the cross-sectional area of wire \mathbf{G} is $5.1 \times 10^{-7} \mathrm{~m}^{2}$.
(ii) The wires are put under tension by turning the wooden pegs shown in the figure. The Young modulus of steel is $2.0 \times 10^{11} \mathrm{~Pa}$.
Calculate the tension required in wire \mathbf{G} to produce an extension of $4.0 \times 10^{-4} \mathrm{~m}$.
tension =N
(iii) Wire \mathbf{A} has a diameter that is half that of wire \mathbf{G}. Determine the tension required for wire \mathbf{A} to produce an extension of $16 \times 10^{-4} \mathrm{~m}$.
tension =N
(iv) State the law that has been assumed in the calculations in (ii) and (iii).
\qquad
7. The results given in the table below are obtained in an experiment to determine the Young modulus of a metal in the form of a wire. The wire is loaded in steps of 5.0 N up to 25.0 N and then unloaded.

	loading	unloading
load $/ \mathrm{N}$	extension $/ \mathrm{mm}$	extension $/ \mathrm{mm}$
0.0	0.00	0.00
5.0	0.24	0.24
10.0	0.47	0.48
15.0	0.71	0.71
20.0	0.96	0.95
25.0	1.20	1.20

(i) Using the results in the table and without plotting a graph, state and explain whether the deformation of the wire

1 is plastic or elastic
\qquad
\qquad
\qquad

2 obeys Hooke's law.
\qquad
\qquad
\qquad
(ii) Explain how the extension and length of the wire may be determined experimentally.
\qquad
\qquad
\qquad
\qquad
(iii) The wire tested is 1.72 m long and has a cross-sectional area of $1.80 \times 10^{-7} \mathrm{~m}^{2}$. Use the extension value given in the table for a load of 25.0 N to calculate the Young modulus of the metal of the wire.

Young modulus $=$ Pa
8. The figure below shows a simple pendulum with a metal ball attached to the end of a string.

When the ball is released from \mathbf{P}, it describes a circular path. The ball has a maximum speed v at the bottom of its swing. The vertical distance between \mathbf{P} and bottom of the swing is h. The mass of the ball is m.
(i) Write the equations for the change in gravitational potential energy, E_{p}, of the ball as it drops through the height h and for the kinetic energy, E_{k}, of the ball at the bottom of its swing when travelling at speed v.
$E_{\mathrm{p}}=$
$E_{\mathrm{k}}=$
(ii) Use the principle of conservation of energy to derive an equation for the speed v. Assume that there are no energy losses due to air resistance.
9. Some countries in the world have frequent thunderstorms. A group of scientists plan to use the energy from the falling rain to generate electricity. A typical thunderstorm deposits rain to a depth of $1.2 \times 10^{-2} \mathrm{~m}$ over a surface area of $2.0 \times 10^{7} \mathrm{~m}^{2}$ during a time of 900 s . The rain falls from an average height of $2.5 \times 10^{3} \mathrm{~m}$. The density of rainwater is $1.0 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$. About 30% of the gravitational potential energy of the rain can be converted into electrical energy at the ground.
(i) Show that the total mass of water deposited in 900 s is $2.4 \times 10^{8} \mathrm{~kg}$.
(ii) Hence show that the average electrical power available from this thunderstorm is about 2 GW.
(iii) Suggest one problem with this scheme of energy production.
\qquad
\qquad
10. The force against length graph for a spring is shown in Fig. 1.

Fig. 1
(a) Explain why the graph does not pass through the origin.
\qquad
\qquad
(b) State what feature of the graph shows that the spring obeys Hooke's law.
\qquad
\qquad
(c) The gradient of the graph is equal to the force constant k of the spring. Determine the force constant of the spring.
\qquad $\mathrm{N} \mathrm{m}^{-1}$
(d) Calculate the work done on the spring when its length is increased from $2.0 \times 10^{-2} \mathrm{~m}$ to $8.0 \times 10^{-2} \mathrm{~m}$.
\qquad
work done = J
(e) One end of the spring is fixed and a mass is hung vertically from the other end. The mass is pulled down and then released. The mass oscillates up and down.
Fig. 2 shows the displacement s against time t graph for the mass.

Fig. 2
Explain how you can use Fig. 2 to determine the maximum speed of the mass. You are not expected to do the calculations.
\qquad
\qquad
\qquad
\qquad
11. The figure below shows a crane that is used to move heavy objects.

The motor \mathbf{M} in the crane lifts a total mass of 1500 kg through a height of 25 m at a constant velocity of $1.6 \mathrm{~m} \mathrm{~s}^{-1}$.

Calculate
(i) the tension in the lifting cable

$$
\text { tension = } \mathrm{N}
$$

(ii) the time taken for the mass to be raised through the height of 25 m
time = s
(iii) the rate of gain of potential energy of the mass

$$
\text { rate of gain of potential energy }=\text {.............................. } \mathrm{J} \mathrm{~s}^{-1}
$$

(iv) the minimum output power of the motor used to raise the mass.
power = W
12. (a) Define the Young modulus of a material.
\qquad
\qquad
(b) Explain why the quantity strain has no units.
\qquad
\qquad

Questions on Work \& Energy - Mark Scheme

1. Any suitable example of something strained (eg: stretched elastic band)
2. (a) (i) (one of the) force \times perpendicular distance between the forces
(ii) torque $=1200 \times 0.4$

$$
\begin{equation*}
=480 \mathrm{Nm} \tag{A1}
\end{equation*}
$$

[allow one mark for $1200 \times 0.2=240(\mathrm{~N} \mathrm{~m})$]
(b) (i) work $=$ force \times distance (moved) \quad B1

$$
=2 \times 1200 \times 2 \times \pi \times 0.2 \quad \text { B1 }
$$

$$
=3016(\mathrm{~J}) \quad \mathrm{A} 0
$$

(ii) power $=$ work done $/$ time

$$
\begin{aligned}
& =3000 /(1 / 40) \\
& =1.2 \times 10^{5}(\mathrm{~W})
\end{aligned}
$$

3. (a) One reading from the graph e.g. 1.0 N causes 7 mm

Hence $5.0(\mathrm{~N})$ causes $35 \pm 0.5(\mathrm{~mm})$
(allow one mark for 35 ± 1 (mm)
(b) (i) Force on each spring is $2.5(\mathrm{~N})$
extension $=17.5(\mathrm{~mm})$ allow $18(\mathrm{~mm})$ or reading from graph [allow ecf from (a)]
(ii) strain energy $=$ area under graph $/ 1 / 2 \mathrm{~F} \times \mathrm{e}$

$$
\begin{aligned}
& =2 \times 0.5 \times 2.5 \times 17.5 \times 10^{-3} \\
& =0.044(\mathrm{~J})
\end{aligned}
$$

A1
[allow ecf from (b)(i)]
(c) $\mathrm{E}=$ stress / strain

$$
\begin{aligned}
& \text { Stress }=\text { force } / \text { area and strain }=\text { extension } / \text { length } \\
& \begin{array}{rlr}
\text { extension } & =(\mathrm{F} \times \mathrm{L}) /(\mathrm{A} \times \mathrm{E}) \\
& =(5 \times 0.4) /\left(2 \times 10^{-7} \times 2 \times 10^{11}\right) \\
& =5 .(0) \times 10^{-5}(\mathrm{~m}) & \text { C1 }
\end{array}
\end{aligned}
$$

(d) strain energy is larger in the spring B1 extension is (very much larger) (for the same force) for the spring B1
4. (a) (i) speed $=d / t$

$$
\begin{align*}
& =24 / 55 \tag{C 1}\\
& =0.436\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \text { allow } 0.44 \\
& \quad \text { do not allow one sf }
\end{align*}
$$

(ii) kinetic energy $=1 / 2 \mathrm{~m} \mathrm{v}^{2}$

$$
\begin{aligned}
& =0.5 \times 20 \times(0.436)^{2} \\
& =1.9(\mathrm{~J}) \text { note ecf from (a)(i) }
\end{aligned}
$$

(iii) potential energy $=\mathrm{mgh}$

$$
\begin{aligned}
& =20 \times 9.8 \times 4 \\
& =784(\mathrm{~J})
\end{aligned}
$$

penalise the use of $g=10$
(b) (i) power = energy / time or work done / time

$$
=(15 \times 784) / 55
$$

note ecf from (a)(iii)

$$
=214(\mathrm{~W})
$$

(ii) needs to supply children with kinetic energy B1
air resistance B1
friction in the bearings of the rollers / belt B1
total mass of children gives an average mass of greater than $20 \mathrm{~kg} \quad$ B1 Max B2
5. Energy cannot be created or destroyed; it can only be transferred/transformed into other forms
or
The (total) energy of a system remains constant or
(total) initial energy $=($ total $)$ final energy (AW)
Allow: 'Energy cannot be created / destroyed / lost'
6. (i) Density $=$ mass / volume

Area \times length $=$ mass $/$ density

$$
\begin{aligned}
\text { Area } & =\left(2.0 \times 10^{-3}\right) /(7800 \times 0.5) \text { or } 2.56 \times 10^{-7} / 0.5 & & \text { B1 } \\
& =5.1(3) \times 10^{-7} \mathrm{~m}^{2} & & \text { A0 }
\end{aligned}
$$

(ii) $\mathrm{E}=(\mathrm{F} \times \mathrm{l}) /(\mathrm{A} \times \mathrm{e}) /$ stress $=\mathrm{F} / \mathrm{A}\left(1.6 \times 10^{8}\right.$ and strain
$=\mathrm{e} / 1\left(8 \times 10^{-4}\right)$
$\mathrm{F}=(\mathrm{E} \times \mathrm{A} \times \mathrm{e}) / 1$
$=\left(2 \times 10^{11} \times 5.1 \times 10^{-7} \times 4.0 \times 10^{-4}\right) / 0.5$
$=82(\mathrm{~N})(81.6)$
(iii) Diameter for D is half G hence area is $1 / 4$ of G

Extension is $4 \times$ greater
Tension required is the same $=82(\mathrm{~N})$
(iv) The extension is proportional to the force / Hooke's B1 law (OWTE)
7. (i) 1 Elastic as returns to original length (when load is removed) B

2 Hooke's law is obeyed as force is proportional to the extension B1
Example of values given in support from table B1
(ii) Measure (original) length with a (metre) rule / tape B1

Suitable method for measuring the extension e.g.
levelling micrometer and comparison wire or fixed scale plus vernier or travelling microscope and marker / pointer B1
(iii) $\mathrm{E}=$ stress $/$ strain C 1

$$
=(25 \times 1.72) /\left(1.8 \times 10^{-7} \times 1.20 \times 10^{-3}\right) \quad \mathrm{C} 1
$$

$$
=1.99 \times 10^{11}(\mathrm{~Pa})
$$

8. (i) $E_{\mathrm{p}}=m g h$ and $E_{\mathrm{k}}=\frac{1}{2} m v^{2}$ (Allow Δh for $\left.h\right)$

Not: $E_{k}=m g h$
(ii) $m g h=\frac{1}{2} m v^{2}$

B1
$v^{2}=2 g h$ or $v=\sqrt{2 g h}$
B1
[3]
9. (i) $m=\rho V$

Allow any subject for the density equation
$m=1.0 \times 10^{3} \times\left(1.2 \times 10^{-2} \times 2.0 \times 10^{7}\right)$
mass of water $=2.4 \times 10^{8}(\mathrm{~kg})$
C1

A0
(ii) loss in potential energy $=2.4 \times 10^{8} \times 9.81 \times 2.5 \times 10^{3}$

Allow 1 mark for' $5.89 \times 10^{12}(J)$
30% of GPE $=0.3 \times 5.89 \times 10^{12}\left(=1.77 \times 10^{12}\right)$
Allow 2 marks for ' $1.77 \times 10^{12}(\mathrm{~J})$ '
power $=\frac{1.77 \times 10^{12}}{900}$
power $=1.9(63) \times 10^{9}(\mathrm{~W})(\approx 2 \mathrm{GW})$
Note: $\frac{5.89 \times 10^{12}}{900}(=6.5 \mathrm{GW})$ scores 2 marks
(iii) Any correct suitable suggestion; eg: the energy supply is not constant/ cannot capture all the rain water / large area (for collection)

Note: Do not allow reference to 'inefficiency' / 'cost'
10. (a) The graph shows length and not extension of the spring / spring has original length (of 2.0 cm) (AW)

Allow: 'length cannot be zero'
(b) Straight line (graph) / linear graph / force \propto extension / constant
gradient (graph)
Not 'force \propto length'
(c) force constant $=\frac{2.0}{0.04}$

Note: The mark is for any correct substitution
force constant $=50\left(\mathrm{~N} \mathrm{~m}^{-1}\right)$
Allow: 1 mark for $0.5\left(\mathrm{~N} \mathrm{~m}^{-1}\right)-10^{n}$ error
Allow 1 mark for $5 / 12 \times 10^{-2}=41.7$ or $4 / 10 \times 10^{-2}=40$ or

$$
\begin{aligned}
& 3 / 8 \times 10^{-2}=37.5 \text { or } 2 / 6 \times 10^{-2}=33.3 \mathrm{or} \\
& 1 / 4 \times 10^{-2}=25
\end{aligned}
$$

(d) work done $=\frac{1}{2} F x$ or $\frac{1}{2} k x^{2}$ or 'area under graph'
work done $=\frac{1}{2} \times 3.0 \times 0.06$ or $\frac{1}{2} \times 50 \times 0.06^{2}$
Possible ecf
work done $=0.09(\mathrm{~J})$
Note: 1 sf answer is allowed
(e) Find the gradient / slope (of the tangent / graph)

Maximum speed at $1.0 \mathrm{~s} / 3.0 \mathrm{~s} / 5.0 \mathrm{~s} /$ steepest 'part'
of graph / displacement $=0$
Allow: 2 marks for 'steepest / maximum gradient'
11. (i) Tension $=$ Weight $/ \mathrm{mg}$

$$
\begin{array}{ll}
=1.5 \times 10^{3} \times 9.8 \\
=14700(\mathrm{~N}) & \text { using } g=10-1 \\
\end{array}
$$

(ii) time $=25 / 1.6=15.6(\mathrm{~s})$ A1
(iii) $\mathrm{PE}=\mathrm{mgh}$ C1

$$
\begin{array}{rlrl}
\mathrm{PE} / \mathrm{t} & =(14700 \times 25) / 15.6 & & \text { or } \\
& 14700 \times 1.6 & \mathrm{C} 1 \\
& =24000 & (23520) & \left(\mathrm{J} \mathrm{~s}^{-1}\right)
\end{array}
$$

$$
\begin{array}{rlr}
\text { or power } & =\mathrm{F} \times \mathrm{v} & \mathrm{C} 1 \\
& =14700 \times 1.6 & \mathrm{C} 1 \\
& =24000 \quad(23520) \quad\left(\mathrm{J} \mathrm{~s}^{-1}\right) & \mathrm{A} 1 \\
\text { (iv) } \begin{array}{ll}
\text { (gain in PE per second }=\text { output power used to lift weight) } \\
\text { power }= & 24000(23520)(\mathrm{W}) / \text { allow those answers } \\
\text { that suggest greater due to friction in lifting mechanism }
\end{array} & \mathrm{B} 1 \\
& &
\end{array}
$$

12. (a) Young modulus $=$ stress $/$ strain
(As long as elastic limit is not exceeded)
B1
(b) Strain has no units because it is the ratio of two lengths. B1
