
Questions on Work & Energy

- Describe one example where elastic potential energy is stored.

 [Total 1 mark]
- **2.** The figure below shows two forces, each of magnitude 1200 N, acting on the edge of a disc of radius 0.20 m.

- (a) (i) Define the torque of a couple.
 - (ii) Calculate the torque produced by these forces.

torque =N m

- (b) This torque is needed to overcome friction and keep the disc rotating at a constant rate.
 - (i) Show that the work done by the **two** forces when the disc rotates one complete revolution is about 3000 J.

[2]

(ii) Calculate the power required to keep the disc rotating at 40 revolutions per second.

[2]

[Total 7 marks]

3. Fig. 1 shows part of the force-extension graph for a spring. The spring obeys Hooke's law for forces up to 5.0 N.

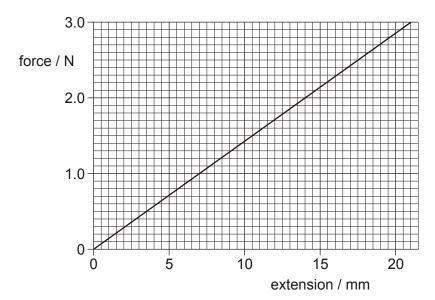


Fig. 1

(a) Calculate the extension produced by a force of 5.0 N.

extension = mm

[2]

(b) Fig. 2 shows a second identical spring that has been put in parallel with the first spring. A force of 5.0 N is applied to this combination of springs.

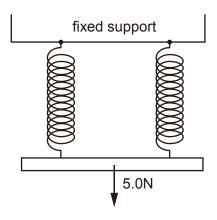


Fig. 2

For the arrangement shown in Fig. 2, calculate

(i) the extension of each spring

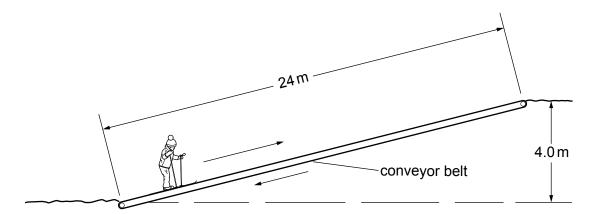
extension = mm

[2]

(ii) the total strain energy stored in the springs.

strain energy = J

[2]


(c) The Young modulus of the wire used in the springs is 2.0×10^{11} Pa. Each spring is made from a straight wire of length 0.40 m and cross-sectional area 2.0×10^{-7} m². Calculate the extension produced when a force of 5.0 N is applied to this straight wire.

extension =m

[3]

(d)	Describe and explain, without further calculations, the difference in the strain energies stored in the straight wire and in the spring when a 5.0 N force is applied to each.

4. The figure below illustrates a conveyor belt for transporting young children up a snow-covered bank so that they can ski back down.

A child of mass 20 kg travels up the conveyor belt at a constant speed. The distance travelled up the slope is 24 m and the time taken is 55 s. The vertical height climbed in this time is 4.0 m.

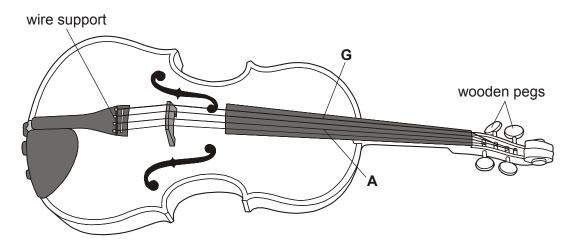
- (a) For the child on the conveyor belt, calculate
 - (i) her speed

[2]

[2]

[Total 11 marks]

(ii) her kinetic energy


[2]

(iii) the increase in her potential energy for the complete journey up the slope.

[2]

	(b)	(i)	The conveyor belt is designed to take a maximum of 15 children at any one time. Calculate the power needed to lift 15 children of average mass 20 kg through a height of 4.0 m in 55 s.	
			power = W	
			[2]
		(ii)	The belt is driven by an electric motor. State two reasons why the motor needs a greater output power than that calculated in (b)(i) .	
			[2	
			[Total 10 marks	J
5.	State	e the p	principle of conservation of energy.	
			[Total 1 mark]

6. The figure below shows a violin.

Two of the wires used on the violin, labelled **A** and **G** are made of steel. The two wires are both 500 mm long between the pegs and support. The 500 mm length of wire labelled **G** has a mass of 2.0×10^{-3} kg. The density of steel is 7.8×10^{-3} kg m⁻³.

(i)	Show that the cross-sectional area of wire G is 5.1×10^{-7}	m ² .
(1)	Show that the cross-sectional area of wife G is 5.1 × 10	ſ

[2]

(ii) The wires are put under tension by turning the wooden pegs shown in the figure. The Young modulus of steel is 2.0×10^{11} Pa. Calculate the tension required in wire **G** to produce an extension of 4.0×10^{-4} m.

[3]

(iii) Wire **A** has a diameter that is half that of wire **G**. Determine the tension required for wire **A** to produce an extension of 16×10^{-4} m.

[1]

(iv) State the law that has been assumed in the calculations in (ii) and (iii).

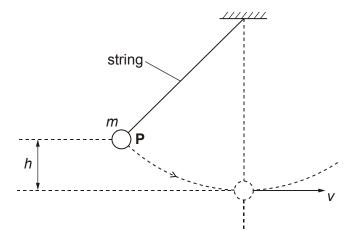
[1]

[Total 7 marks]

7. The results given in the table below are obtained in an experiment to determine the Young modulus of a metal in the form of a wire. The wire is loaded in steps of 5.0 N up to 25.0 N and then unloaded.

	loading	unloading
load / N	extension / mm extension	
0.0	0.00	0.00
5.0	0.24	0.24
10.0	0.47	0.48
15.0	0.71	0.71
20.0	0.96	0.95
25.0	1.20	1.20

(i)	Using the results in the table and without plotting a graph, state and explain
	whether the deformation of the wire


	1	is plastic or elastic	
			[1]
	2	obeys Hooke's law.	ניז
			[2]
(ii)		ain how the extension and length of the wire may be determined rimentally.	

(iii) The wire tested is 1.72 m long and has a cross-sectional area of 1.80×10^{-7} m². Use the extension value given in the table for a load of 25.0 N to calculate the Young modulus of the metal of the wire.

[3]

[Total 8 marks]

8. The figure below shows a simple pendulum with a metal ball attached to the end of a string.

When the ball is released from \mathbf{P} , it describes a circular path. The ball has a maximum speed v at the bottom of its swing. The vertical distance between \mathbf{P} and bottom of the swing is h. The mass of the ball is m.

(i) Write the equations for the change in gravitational potential energy, E_p , of the ball as it drops through the height h and for the kinetic energy, E_k , of the ball at the bottom of its swing when travelling at speed v.

$$E_p =$$

$$E_{k} =$$

[1]

(ii) Use the principle of conservation of energy to derive an equation for the speed v. Assume that there are no energy losses due to air resistance.

[2]

[Total 3 marks]

9.	Some countries in the world have frequent thunderstorms. A group of scientists plan to use the energy from the falling rain to generate electricity. A typical thunderstorm deposits rain to a depth of 1.2×10^{-2} m over a surface area of 2.0×10^{7} m ² during a time of 900 s. The rain falls from an average height of 2.5×10^{3} m. The density of rainwater is 1.0×10^{3} kg m ⁻³ . About 30% of the gravitational potential energy of the rain can be converted into electrical energy at the ground.				
	(i)	Show that the total mass of water deposited in 900 s is 2.4×10^8 kg.			
			[2]		
	(ii)	Hence show that the average electrical power available from this thunderstorm is about 2 GW.			
			[3]		
	(iii)	Suggest one problem with this scheme of energy production.			
			[1]		
		[Total 6 m	arks]		

10. The force against length graph for a spring is shown in Fig. 1.

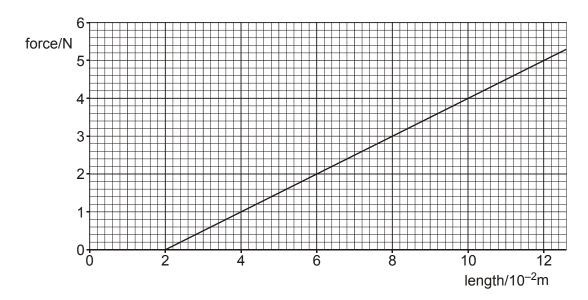


Fig. 1

(a)	Explain why the graph does not pass through the origin.	
		[1]

State what feature of the graph shows that the spring obeys Hooke's law.

(c) The gradient of the graph is equal to the force constant *k* of the spring. Determine the force constant of the spring.

force constant = N m⁻¹

[2]

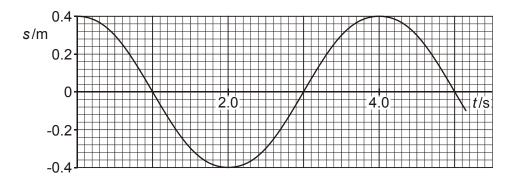
[1]

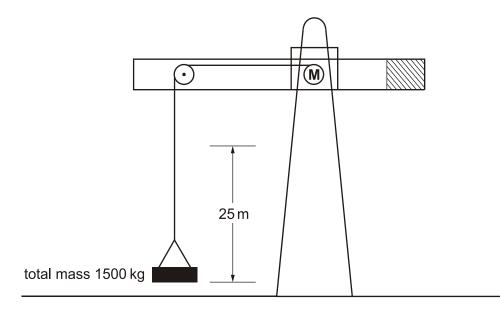
(b)

(d)	Calculate the work done on the spring when its length is increased from
	2.0×10^{-2} m to 8.0×10^{-2} m.

[2]

(e) One end of the spring is fixed and a mass is hung vertically from the other end. The mass is pulled down and then released. The mass oscillates up and down. Fig. 2 shows the displacement *s* against time *t* graph for the mass.




Fig. 2

Explain how you can use Fig. 2 to determine the maximum speed of the mase You are not expected to do the calculations.	SS

[2]

[Total 8 marks]

11. The figure below shows a crane that is used to move heavy objects.

The motor $\bf M$ in the crane lifts a total mass of 1500 kg through a height of 25 m at a constant velocity of 1.6 m s⁻¹.

Calculate

(i) the tension in the lifting cable

(ii) the time taken for the mass to be raised through the height of 25 m $\,$

(iii) the rate of gain of potential energy of the mass

rate of gain of potential energy =
$$J s^{-1}$$

[2]

	(iv)	the minimum output power of the motor used to raise the mass.
		power = W
		[1 [Total 7 marks
12.	(a)	Define the Young modulus of a material.
	(b)	Explain why the quantity strain has no units.
		[1 [Total 2 marks

Questions on Work & Energy - Mark Scheme

1. Any suitable example of something strained (eg: stretched elastic band)

[1]

[7]

B1

- 2. (a) (i) (one of the) force \times perpendicular distance between the forces B1
 - (ii) torque = 1200×0.4 C1 = 480 Nm

[allow one mark for $1200 \times 0.2 = 240 \text{ (N m)}$]

(b) (i) work = force \times distance (moved) B1

 $= 2 \times 1200 \times 2 \times \pi \times 0.2$ B1

=3016 (J) A0

(ii) power = work done / time C1

=3000 / (1/40)

 $=1.2\times10^5 \text{ (W)}$ A1

3. (a) One reading from the graph e.g. 1.0 N causes 7 mm

Hence 5.0 (N) causes 35 ± 0.5 (mm) A1 (allow one mark for 35 ± 1 (mm)

(b) (i) Force on each spring is 2.5 (N)

extension = 17.5 (mm) allow 18 (mm) or reading from graph [allow ecf from (a)]

(ii) strain energy = area under graph $/ \frac{1}{2} F \times e$

 $= 2 \times 0.5 \times 2.5 \times 17.5 \times 10^{-3}$

= 0.044 (J)[allow ecf from (b)(i)]

(c) E = stress / strain C1

Stress = force / area and strain = extension / length

extension = $(F \times L) / (A \times E)$

$$= (5 \times 0.4) / (2 \times 10^{-7} \times 2 \times 10^{11})$$

 $=5.(0)\times10^{-5}$ (m)

A1

	(d)	strai	n energy is larger in the spring	B1	
		exte	nsion is (very much larger) (for the same force) for the spring	B1	[11]
4.	(a)	(i)	speed = d / t	C1	
			= 24 / 55		
			= $0.436 \text{ (m s}^{-1}) \text{ allow } 0.44$ do not allow one sf	A1	
		(ii)	kinetic energy = $\frac{1}{2}$ m v ²	C1	
			$=0.5\times20\times(0.436)^2$		
			= 1.9 (J) note ecf from (a)(i)	A1	
		(iii)	potential energy = mg h	C1	
			$=20\times9.8\times4$		
			= 784 (J)	A1	
			penalise the use of $g = 10$		
	(b)	(i)	power = energy / time or work done / time	C1	
			$=(15\times784)/55$		
			note ecf from (a)(iii)		
			= 214 (W)	A1	
		(ii)	needs to supply children with kinetic energy	B1	
			air resistance friction in the bearings of the rollers / belt	B1 B1	
			total mass of children gives an average mass of greater than 20 kg	B1	
			Max B2		[10]
5.	be tr		anot be created or destroyed; it can only red/transformed into other forms		
	or The (total) energy of a system remains constant or				
	(tota	l) initi	al energy = (total) final energy (AW)		
			Allow: 'Energy cannot be created / destroyed / lost'		

Physics And Maths Tutor.com

[1]

B1

6. (i) Density = mass / volume B1

Area × length = mass / density

Area =
$$(2.0 \times 10^{-3})$$
 / (7800×0.5) or 2.56×10^{-7} / 0.5 B1

= $5.1(3) \times 10^{-7}$ m² A0

(ii) $E = (F \times I)$ / $(A \times e)$ / stress = F / A (1.6×10^{8} and strain = e / $1 (8 \times 10^{-4})$ C1

 $F = (E \times A \times e)$ / 1

= $(2 \times 10^{11} \times 5.1 \times 10^{-7} \times 4.0 \times 10^{-4})$ / 0.5 C1

=82 (N) (81.6) A1

(iii) Diameter for D is half G hence area is ½ of G Extension is $4 \times$ greater Tension required is the same = 82 (N) A1

(iv) The extension is proportional to the force / Hooke's law (OWTE)

2 Hooke's law is obeyed as force is proportional to the extension **B**1 Example of values given in support from table B1 Measure (original) length with a (metre) rule / tape **B**1 (ii) Suitable method for measuring the extension e.g. levelling micrometer and comparison wire or fixed scale plus vernier or travelling microscope and marker / pointer **B**1 (iii) E = stress / strain C1= $(25 \times 1.72) / (1.8 \times 10^{-7} \times 1.20 \times 10^{-3})$ C1 $= 1.99 \times 10^{11} (Pa)$ **A**1 [8]

Elastic as returns to original length (when load is removed)

8. (i)
$$E_p = mgh \text{ and } E_k = \frac{1}{2}mv^2 \text{ (Allow } \Delta h \text{ for } h)$$

Not: $E_k = mgh$

PhysicsAndMathsTutor.com

7.

(i)

1

B1

(ii)
$$mgh = \frac{1}{2}mv^2$$

$$v^2 = 2gh \text{ or } v = \sqrt{2gh}$$

B1

[3]

9. (i)
$$m = \rho V$$

Allow any subject for the density equation

C1

$$m = 1.0 \times 10^3 \times (1.2 \times 10^{-2} \times 2.0 \times 10^7)$$

C1

mass of water =
$$2.4 \times 10^8$$
 (kg)

A0

(ii) loss in potential energy =
$$2.4 \times 10^8 \times 9.81 \times 2.5 \times 10^3$$

Allow 1 mark for '5.89 × 10^{12} (J)

C1

30% of GPE =
$$0.3 \times 5.89 \times 10^{12}$$
 (= 1.77×10^{12})

Allow 2 marks for '1.77 × 10^{12} (J)'

C1

power =
$$\frac{1.77 \times 10^{12}}{900}$$

C1

power =
$$1.9(63) \times 10^9$$
 (W) (≈ 2 GW)

Note:
$$\frac{5.89 \times 10^{12}}{900}$$
 (= 6.5 GW) scores 2 marks

A0

B1

(iii) Any correct suitable suggestion; eg: the energy supply is not constant/ cannot capture all the rain water / large area (for collection)

Note: Do not allow reference to 'inefficiency' / 'cost'

[6]

10. (a) The graph shows length and not extension of the spring / spring has original length (of 2.0 cm) (AW)

Allow: 'length cannot be zero'

B1

(b) Straight line (graph) / linear graph / force ∝ extension / constant

gradient (graph)

Not 'force ∝ *length'*

B1

(c) force constant = $\frac{2.0}{0.04}$

Note: The mark is for any correct substitution

C1

force constant = $50 \text{ (N m}^{-1})$

Allow: 1 mark for 0.5 (N m⁻¹) – 10^n error **Allow** 1 mark for $5/12 \times 10^{-2} = 41.7$ or $4/10 \times 10^{-2} = 40$ or $3/8 \times 10^{-2} = 37.5$ or $2/6 \times 10^{-2} = 33.3$ or $1/4 \times 10^{-2} = 25$

A1

(d) work done = $\frac{1}{2}Fx$ or $\frac{1}{2}kx^2$ or 'area under graph'

C1

work done = $\frac{1}{2} \times 3.0 \times 0.06$ or $\frac{1}{2} \times 50 \times 0.06^2$

Possible ecf

work done = 0.09 (J)

Note: 1 sf answer is allowed

A1

(e) Find the gradient / slope (of the tangent / graph)

B1

B1

Maximum speed at 1.0s / 3.0s / 5.0s / steepest 'part' of graph / displacement = 0

Allow: 2 marks for 'steepest / maximum gradient'

[8]