OCR Oxford Cambridge and RSA	
Practice paper- Set 2	
H 556/03 Unified physics	
MARK SCHEME	
	Duration: 1 hour 30 minutes

MAXIMUM MARK 70

Final

This document consists of 10 pages

Mark Scheme

Practice 2

MARKING INSTRUCTIONS

Generic version as supplied by OCR Sciences

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are <u>method</u> marks upon which **A**-marks (accuracy marks) later depend. For an **M**-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular **M**-mark, then none of the dependent **A**-marks can be scored.

C marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the **C**-mark is given.

A marks: These are accuracy or <u>answer</u> marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

Note about significant figures:

If the data given in a question is to 2 sf, then allow to 2 or <u>more</u> significant figures. If an answer is given to fewer than 2 sf, then penalise once only in the <u>entire</u> paper. Any exception to this rule will be mentioned in the Additional Guidance.

Q	luesti	on	Answer	Marks	AO element	Guidance
1	а		$p = \rho gh = 1.3 \times 9.81 \times h = 1.0 \times 10^5$ h = 7.8 km	B1 B1	2.2	
	b	(i)	$-mV_g = \frac{1}{2}mv^2 \text{ or } \frac{1}{2}mv^2 + mV_g = 0$ $V_g = -GM/R = -gR$ $v = \sqrt{(2gR)}$	B1 B1 B1	1.1 2.1	Working must be shown
		(ii)	$v = \sqrt{(2 \times 9.81 \times 6.4 \times 10^6)} = 11 \times 10^3 \text{ m s}^{-1}$	B1	2.6	allow 11(.2) km s ⁻¹
		(iii)	$\frac{1}{2}$ mc ² = 3/2 kT where m = (M/N _A) =6.6 x 10 ⁻²⁷ kg T = 6.6 x 10 ⁻²⁷ x 121 x 10 ⁶ / 3 x 1.38 x 10 ⁻²³ T = 1.9 x 10 ⁴ (K)	B1 C1 A1	1.2 2.6	ecf b(ii); allow m = 4u or 4 x 1.67 x 10 ⁻²⁷ allow 2 or 2.0
		(iv)	1 random motion and elastic collisions of particles 2 lead to distribution of kinetic energies/velocities among particles 3 a very few will have very high velocities at top end of distribution 4 a long way from mean /r.m.s. velocity at 300 K 5 hence some able to escape	B1 B1 B1 B1	1.1 1.2	max 4 out of 5 marking points where answer is a logical progression
		(v)	helium nucleus is an α-particle so helium is generated by radioactive decay helium is found in (natural gas) deposits underground	B1 B1	1.1 2.1	max 2 out of 3 marking points
			Total	15		

Q	Question		Answer		AO element	Guidance
2	(a)		gradient = b and y-intercept = lg a	B1	3.1	
	(b)	(i)	1.70; 0.41 ± 0.03	B1 B1	2.8	both values for the mark allow ecf to find uncertainty value
		(ii)	two points plotted correctly; line of best fit	B1 B1	3.2	ecf value and error bar of first point allow ecf from points plotted incorrectly
	С	(i)	b = gradient = 1.60 y = 0.86 (\pm 0.01); x = 1.98 so <i>y</i> -intercept = 0.86 - 1.6 x 1.98 = -2.3(1) a = 10 ^{-2.3} = 0.005	B1 B1 B1	3.2	allow 1.56 to 1.64; allow 1.6 ecf gradient in finding y-intercept
		(ii)	worst acceptable straight line b = gradient of steepest line = 1.75 giving uncertainty ± 0.15	B1 B1	3.2	steepest or shallowest possible line that passes through the error bars; should pass from top of top error bar to bottom of bottom error bar or bottom of top error bar to top of bottom error bar allow (1.6) ± 0.1 or 0.2 where plausible working is shown
			Total	10		

Q	Question		Answer	Marks	AO element	Guidance
3		(i)	acceptable pattern with lines touching but not entering spheres lines perpendicular to spheres and arrows from plus ion to minus ion	B1 B1	2.5	adequate drawing for 1 mark award second mark for detail/quality
		(ii)	$\begin{split} &E = kQ/r^2 \text{ where } k = 1/4\pi\epsilon_0 \\ &E = 9 \times 10^9 \times 1.6 \times 10^{-19}/6.25 \times 10^{-20} \\ &E = 2.3 \times 10^{10} \\ &2E = 4.6 \times 10^{10} \text{ (N C}^{-1)} \end{split}$	C1 C1 C1 A1	1.1 2.6	correct formula with Q = e correct substitution evaluation fields of charges add, allow ecf for E
	(b)	(i)	a = $4\pi^{2}f^{2}x$ so k = $(m4\pi^{2}f^{2}) = 1.7 \times 10^{-27} \times 4 \times 9.87 \times 43.7 \times 10^{26}$ k = 292 (N m ⁻¹)	C1 B1 A1	1.2 2.6	condition for SHM substitution ecf if incorrect mass used
		(ii)	$ \begin{array}{l} (N2 \ gives) \ F_H = m_H a_H and \ F_I = m_I a_I \\ (N3 \ gives) \ F_H = F_I can \ be \ implicit \\ SHM \ gives \ a \ \alpha \ (-)x \\ hence \ x_H/x_I = a_H/a_I = m_I/m_H = 127 \end{array} $	B1 B1 B1 B1	1.2 2.1 2.2	allow total momentum = 0 at all times SHM gives v = $2\pi f x_{max}$ so $m_H x_H = m_I x_I$ accept 127 = $x_H / x_I \approx 10/0.08 = 125$
			Total	13		

Qı	Question		Answer	Marks	AO element	Guidance
4	a *		see page 7	B1 x 6		
	b	(i)	E = hc/λ; Δε = E ₁ – E ₂ = hcΔλ/λ ² Δε = 6.63 x 10 ⁻³⁴ x 3 x 10 ⁸ x 0.6 x 10 ⁻⁹ / 5.9 ² x 10 ⁻¹⁴ Δε = 3.4 x 10 ⁻²² (J)	C1 C1 A1	1.1 2.6	allow calculation of E = hc/λ twice and difference taken
		(ii)	$sin \theta = n\lambda/d; 1/d = 3 \times 10^{5} (m^{-1})$ $\theta_{1} - \theta_{2} = sin^{-1}(2 \times 589.6 \times 3 \times 10^{-4}) - sin^{-1}(2 \times 589 \times 3 \times 10^{-4})$ $\theta_{1} - \theta_{2} = 20.717 - 20.695 = 0.022^{0}$	C1 M1 A1	1.2 2.6	or similar allow 20.72 – 20.70
			Total	12		

Question	Answer	Marks	Guidance
Question 4 (a)	AnswerLevel 3 (5–6 marks)Clear methods of measurement, statement of uncertainties and how to minimise themThere is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.Level 2 (3–4 marks)Adequate methods of measurement, statement of 	Marks B1 x 6	GuidanceIndicative scientific points may include:M measurement D measured with metre rulersy measured using mm graticule on glass screen observed with hand lensU uncertainty D maximum ± 2 mm in 1.5 to 2.0 m 0.1%y ± 0.5 mm in the position of the centre of each maximum, giving an

Mark Scheme

C	Question		Answer Ma		AO element	Guidance
5	a *		see page 9	B1x6	3	
	b	(i)	$I = I_0/r^2$ or $I = kr^{-2}$ (k = 20) so $I = 20/(0.25)^2 = 20 \times 16 = 320$	B1 B1	1.1 2.6	allow inverse square law statement
		(ii)1	640	B1	1.2	
		(ii)2	$640 = 20/r^2$ so r = $\sqrt{(20/640)} = 0.18$ (m)	C1 A1	2.6	ecf b(ii)1 accept 0.177 (m)
			Total question 5	11		

C	uestior	Answer	Marks	Guidance
5	(a)	Level 3 (5–6 marks) Clear set up and description of chosen experiment(s) and clear interpretation of observations	B1 x 6	Indicative scientific points may include: 1. range/penetration/absorption/deflection experiment suggested
		There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.		 2. suitable arrangement and choice of apparatus e.g. on diagram; allow GM tube as detector for all particles 3. description of range/penetration/absorption experiment:
		Level 2 (3–4 marks) Limited set up and description of chosen experiment and limited interpretation of observations		 a. α place detector very close/ 2cm from source; measure count rate, use paper screen or move back to 10 cm or more, measure count rate, interpret result; contrast to background count level and/or other emissions from same source
		There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence.		b . β place detector e.g. 10 cm from source measure count rate, add thin sheets of Al until count drops to very low or almost constant value e.g. γ present; interpret result;
		Level 1 (1–2 marks) Very basic description of chosen experiment and limited interpretation of observations		c. $γ$ place detector e.g. 10 cm from source measure count rate, add thin sheets of Pb until count drops to very low/background level; interpret result
		The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear.		4. deflection experiment: needs vacuum for α experiment; source for radiation passes through region of E- or B- field; deflection or not of particles detected by detector to distinguish emissions;
		0 marks No response or no response worthy of credit.		detail of directions; amount of curvature determines energy of emission; and nature of particle

Practice 2

Q	uestio	n	Answer	Marks	AO element	Guidance
6	а		Time constant of charging = 10 s maximum current = 10/100k = 100 µA statements about adequate sensitivity of meter and stopwatch	B1 B1 B1 B1	3.3	allow alternative but equivalent statements e.g. current falls to 37 mA in 10 s e.g. readings can be taken every 3 to 5 s so can collect at least 8 sets of values before approaching change of less than 2 μ A; sensitivity of 0.5 s adequate
	(b)	(i)	1 the (total stored) charge is constant 2 capacitors in parallel must come to the same voltage 3 capacitors are identical so each stores half/same charge so final V is 5 V	B1 B1 A0		max 2 out of 3 marking points allow mathematical argument, e.g. initial Q = 1 mC final Q on each is 0.5 mC as identical Cs in parallel so V = $0.5 \times 10^{-3} \times 1.0 \times 10^{-4} = 5.0$ V or total C x total Q gives 5 V
	(ii)		C_1 curve : exponential decay curve from 10 V to 5 V C_2 curve: 10 – C_1 curve time axis: curves to be horizontal at 5V about 25 s	B1 B1 B1	3.2	time constant of 5 s
			Total	9		