1		j. 2.1 shows a jet aircraft preparing for take-off along a horizontal runway. The engine of the is running but the brakes are applied. The jet is not yet moving.
		runway
		Fig. 2.1
	Or	Fig. 2.1 draw an arrow to show each of the following forces acting on the jet:
	(i)	the weight of the jet (label this W)
	(ii)	the force produced by the engine (label this T)
	(iii)	the total force exerted by the runway on the jet (label this F). [2]
		e brakes are released. The maximum force produced by the engine is $28kN$. The take-off eed of the jet is $56ms^{-1}$. The mass of the jet is $6200kg$.
	(i)	Calculate the minimum distance the jet travels from rest to the point where it takes off.
		distance = m [3]
	(ii)	Explain why the runway needs to be longer than the distance calculated in (i).
		[2]

(c) The jet is to be used in a flying display in which the pilot will be required to fly the jet in a **horizontal** circle of radius *r*, at a constant speed of 86 m s⁻¹. This is achieved by flying the jet with its wings at 35° to the horizontal. With the jet flying in this way, the two forces acting on the jet are the lift *L* and the weight *W*, as shown in Fig. 2.2.

Air resistance has negligible effect on the motion of the jet during this manoeuvre.

35°

Fig. 2.2

(i) Show that the magnitude of the force L is about 74 kN.

[1]

(ii) Calculate the radius r.

radius = m [3]

(d) In a more complex manoeuvre (loop the loop), the pilot is required to fly in a vertical circle at a constant speed as shown in Fig. 2.3.

Fig. 2.3

- (i) For a certain speed, the pilot can experience a sensation of weightlessness at a particular point along the circular path.
 - 1 On Fig. 2.3, mark with a cross labelled **A**, the point where the pilot experiences the sensation of weightlessness. [1]
 - 2 State the magnitude of the vertical component of the contact force exerted by the seat on the pilot at **A**.

force	N I	Γ4·	1
iorce =	 IN	LI.	1

- (ii) In this manoeuvre it is convenient to analyse the motion of the jet in terms of two forces:
 - a constant weight W
 - a variable force P.

P is the resultant of the engine thrust, the lift from the wings and air resistance.

At the point ${\bf B}$ in Fig. 2.3 the jet is flying vertically upwards.

Explain why the force *P* is not directed towards the centre of the circular path.

[Total: 14]

2 Fig. 3.1 shows apparatus used to investigate circular motion. The bung is attached by a continuous nylon thread to a weight carrier supporting a number of slotted masses which may be varied. The thread passes through a vertical glass tube. The bung can be made to move in a nearly horizontal circle at a steady high speed by a suitable movement of the hand holding the glass tube. A constant radius *r* of rotation can be maintained by the use of a reference mark on the thread.

Fig. 3.1

(a) (i) Draw an arrow labelled **F** on Fig. 3.1 to indicate the direction of the resultant force on the bung. [1]

(ii)	Explain how the speed of the bung remains constant even though there is a resultant force F acting on it.

(b)	(i)	Two students carry out an experiment using the apparatus in Fig. 3.1 to investigate the relationship between the force F acting on the bung and its speed v for a constant radius. Describe how they obtain the values of F and v .
		[5]
	(ii)	1 Sketch, on Fig. 3.2, the expected graph of F against v^2 .
		[1] Fig. 3.2
		1 ig. 3.2
		2 Explain how the graph can be used to determine the mass m of the bung.

		[2]

[Total: 11]

3	(a)	(i)	State Newton's first law of motion.
			[1]
		(ii)	Define the <i>newton</i> .
			[1]
	(b)	The	et plane on the deck of an aircraft carrier is accelerated before take-off using a catapult. mass of the plane is 3.2×10^4 kg and it is accelerated from rest to a velocity of 55m s^{-1} in the of 2.2s . Calculate
		(i)	the mean acceleration of the plane
			mean acceleration =ms ⁻² [2]
		(ii)	the distance over which the acceleration takes place
			distance = m [2]
		(iii)	the mean force producing the acceleration.

mean force =N [1]

(c)	The jet plane describes a horizontal circle of radius 870 m flying at a constant speed o 120 m s ⁻¹ .					
	(i)	State the direction of the resultant horizontal force acting on the plane.				
	(ii)	Calculate the magnitude of this horizontal force.				
		force =N [2]				
(d)	At a	changing the velocity of the plane it can be made to fly in a vertical circle of radius 1500 m. a particular point in the vertical circle, the contact force between the pilot and his seat may zero and the pilot experiences "weightlessness".				
	(i)	State and explain at what point in the circle this weightlessness may occur.				
		[2]				
	(ii)	Calculate the speed of the plane at which weightlessness occurs.				
		speed =ms ⁻¹ [2] [Total: 14]				

4 (a) Fig. 2.1 shows the London Eye.

Fig. 2.1

It has 32 capsules equally spaced around the edge of a large vertical wheel of radius 60 m. The wheel rotates about a horizontal axis such that each capsule has a constant speed of $0.26\,\mathrm{m\,s^{-1}}$.

(i) Calculate the time taken for the wheel to make one complete rotation.

(ii) Each capsule has a mass of 9.7×10^3 kg. Calculate the centripetal force which must act on the capsule to make it rotate with the wheel.

centripetal force = N [2]

(b) Fig. 2.2 shows the drum of a spin-dryer as it rotates. A dry sock **S** is shown on the inside surface of the side of the rotating drum.

Fig. 2.2

- (i) Draw arrows on Fig. 2.2 to show the direction of the centripetal force acting on **S** when it is at points **A**, **B** and **C**. [1]
- (ii) State and explain at which position, A, B or C the normal contact force between the sock and the drum will be

1	the greatest	
		[2]
2	the least.	
		[1]

[Total: 7]

C	(uesti	ion	Answer	Mark	Guidance		
1	1 (a) (i) (ii) (iii)		ii) T		Both forces must be correct to score this mark.		
		(111)	W Straight line for F Correct direction not horizontal or vertical	B1	Allow: Freehand sketch of <i>F</i> must lie between 15° and 75° to the horizontal to score this mark.		
	(b)	(i)	a = T/m $a = 28 \times 10^3 / 6200 (= 4.516)$ $v^2 = u^2 + 2as$ $56^2 = 0 + 2 \times 4.516s$ (any subject) s = 350 (m)	C1 C1 A1	Must substitute to score this mark. Answer to 3 sf = 347 (m). Allow: max 2 marks if v is not squared but correct formula was quoted. [Expect $s = 6.2$ (m)] Allow: $Fs = \frac{1}{2} mv^2$ [C1] $28 \times 10^3 s = \frac{1}{2} \times 6200 \times 56^2$ [C1] (any subject) $s = 350$ (m) [A1] Allow: $Ft = mv$ $t = 12.4$ (s) [C1] $s = \frac{1}{2} vt = \frac{1}{2} \times 56 \times 12.4$ [C1] $s = 350$ (m) [A1]		
	(c)	(ii)	Air resistance/drag/friction acts on aircraft decreasing either the net forward force or the acceleration Fs = Δ KE so reduced force must act over a longer distance to produce enough kinetic energy for take-off OR $v^2 = (u^2) + 2as$ so reduced acceleration means longer distance to reach take-off speed. $L \cos 35^\circ = 6200 \times 9.81$	M1	Not: 'slowing the aircraft down'. Allow word equation. Note: This mark cannot be given if the previous (M1) mark has not been scored. Allow: Use of 9.8		
			$L = \frac{6200 \times 9.81}{\cos 35^{\circ}} \text{OR} L = 7.42 \times 10^{4}$ $L = 7.4 \times 10^{4} \text{ (N)}$	M1 A0	Note: There is no mark for the answer as it is given in the question. Marks in 'Show' questions are for the working.		

(Questi	on	Answer	Mark	Guidance
		(ii)	$L\sin 35^{\circ} = mv^{2}/r$ $r = \frac{6200 \times 86^{2}}{r}$	C1	
			$7 - \frac{1}{7.4 \times 10^4 \text{ sin}35^\circ}$	C1	Possible ecf from (c)(i).
			r = 1100 (m)	A1	Correct answer to 3 sf = 1.08×10^3 (m). Allow: 1 mark for using cos 35° instead of sin 35°. Expect gives an answer of 760 (m). Allow: 2 marks for correct working using v = 56 (m s ⁻¹) Expect an answer of $r = 460$ (m). No marks for using tan 35° or for omitting a trig function.
	(d)	(i)1	Indication at 'top' of circle (by eye)	B1	
		(i)2	0 (N)	B1	
		(ii)	P is not the resultant force OR Resultant force must be towards centre of circle so P must have a component acting vertically upwards, equal in magnitude to W (AW)	B1	Allow: (Horizontal) component of <i>P</i> provides centripetal acceleration and vertical component of <i>P</i> is equal to weight. (AW)
			Total	14	

Q	uesti	on	Answer	Marks	Guidance
2	(a)	(i)	Arrow (labelled F) directed towards centre of circle	B1	Allow: arrow drawn parallel to the string
		(ii)	Resultant force (F) acts at 90° to motion / velocity of bung	B1	Allow: No component of <i>F</i> acts in the direction of motion (B1)
			so no work done is done by F (hence no change in speed)	B1	hence there is no acceleration in the direction of motion (AW) (B1)
	(b)	(i)	Student <u>tries to</u> rotate bung at <u>constant</u> radius / <u>tries to</u> keep reference mark at end of tube (AW)	B1	Not: bald 'constant radius'
			Force F is calculated using $F = Mg$. where M is mass of slotted masses	B1	Not : F = weight
			Measure time t for n revolutions of the bung (hence calculate T for 1 revolution).	B1	Not: 'take time for 1 revolution'
			Measure radius r when <u>stationary</u>	B1	
			Calculate v using $2\pi r n/t$ (or $2\pi r/T$).	B1	
		(ii)	Straight line of positive gradient passing through the origin	B1	
			$F = \frac{m}{r} v^2 \text{hence gradient} = \frac{m}{r}$	B1	Cannot award this mark if graph is curved
			Mass = gradient (of graph) x radius (of orbit)	B1	Can score this mark if graph is curved
			Total	11	

3	Expected Answers	Marks	Additional guidance
(a)(i)	A body will remain at rest or continue to move with constant velocity unless acted upon by a force (WTTE)	B1	Do not allow speed unless "speed in a straight line" is stated. Allow "uniform motion"
(a)(ii)	The force which gives a mass of 1 kg an acceleration of 1 m s ⁻²	B1	Allow 1N = 1 kg m s ⁻²
(b)(i)	Use of $v = u + at$ OR $a = (v - u) / t \Rightarrow a = (55 - 0) / 2.2$ $a = 25 \text{ (m s}^{-2}\text{)}$	C1 A1	
(b)(ii)	Use of $s = ut + \frac{1}{2} at^2$ e.g. $s = 0 + \frac{1}{2} \times 25 \times 2.2^2$ s = 60.5 (m)	C1 A1	Allow other valid solutions e.g. using $v^2 = u^2 + 2as$
(b)(iii)	$F = ma = 3.2 \times 10^4 \times 25 = 8.0 \times 10^5 \text{ (N)}$	A1	Allow ecf from (b)(i)
(c)(i)	towards the centre of the circle.	B1	Do not allow a bare "perpendicular to the velocity" Do not allow "in the same direction as the acceleration."
(c)(ii)	use $F = mv^2/r$ e.g. $F = (3.2 \times 10^4 \times 120^2)/870$ $F = 5.3 \times 10^5 (529655) (N)$	C1 A1	If 55 is used instead of 120 for the velocity F = 1.1x10 ⁵ ms ⁻¹ and scores 1 mark
(d)(i)	At top of the circle when the weight provides/equals the required centripetal force	M1 A1	Allow "when the resultant force = weight"
(d)(ii)	realisation that acc = g (OR 9.81) AND (hence) $v^2/r = g$ { $v = \sqrt{(gr)} = \sqrt{(9.81 \text{ x } 1500)}$ } $\Rightarrow v = 120 \text{ (m s}^{-1}) \text{ (121.3)}$	M1 A1	Accept 121.24 as this corresponds to 9.8, do not allow 122.5 since this assumes $g = 10 \text{ ms}^{-2}$
	Total	14	

Question		ion	Expected Answers	Marks	Additional guidance
4	а	i	$(v = 2\pi r/t) t = 2\pi 60/0.26 = 1450 s$	B1	Correct answer is 1449.96 hence allow 1.4 X 10 ³ Do not allow a bare 1.5 x10 ³
		ii	(ii) corr substitution into $F = mv^2/r$: eg $F = (9.7x10^3x0.26^2)/60$ F = 10.9 N	C1 A1	Allow 11 N
	b	i	THREE correct arrows at A, B and C all pointing towards the centre (judged by eye)	B1	Ignore starting point of arrow
		ii	Greatest reaction force is a C because it supports weight of sock AND provides the required upward resultant (centripetal) force (WTTE)	M1 A1	This is a mandatory M mark. The second mark cannot be gained unless this is scored. Any indication that candidates think that the centripetal force is a third force loses this second and possibly the next mark.
			2. Least a A because sock's weight provides part of the required downward resultant (centripetal) force (WTTE)	B1	They must make correct reference to the resultant force that provides the required centripetal force/acceleration. Allow answers using the equation $F = mv^2/r$ such as N_c - mg (at C) = centripetal force OR mv^2/r OR $mg + N_A$ (at A) = centripetal force OR mv^2/r
			Total	7	