Questions on Forces

1. The figure below shows a kitchen cupboard securely mounted to a vertical wall. The cupboard rests on a support at **A**.

The total weight of the cupboard and its contents is 200 N. The line of action of its weight is at a distance of 12 cm from **A**. The screw securing the cupboard to the wall is at a vertical distance of 75 cm from **A**.

(i) State the principle of moments.

In your answer,	you should use a	appropriate techi	nical terms, spel	lled correctly.

[2]

(ii)	The direction of the force F provided by the screw on the cupboard is horizontal as shown in the figure above. Take moments about A . Determine the value of F .	
	<i>F</i> = N	[2]
(iii)	The cross-sectional area under the head of the screw in contact with the cupboard is $6.0 \times 10^{-5} \text{m}^2$. Calculate the pressure on the cupboard under the screw head.	
	pressure =Pa	[2]
(iv)	State and explain how your answer to (iii) would change, if at all, if the same screw was secured much closer to A .	
	[Total 8 m	[2] narks]

2. The figure below shows a lawn mower which is carried by two people.

(i) The two people apply forces **A** and **B** at each end of the lawn mower. The weight

of the lawn mower is 350 N.

Explain why the weight of the lawn mower does not act in the middle of the lawn mower, that is 55 cm from each end.

.....

2 Use the principle of moments to show that the force **B** is 64 N.

[2]

3 Determine the force **A**.

[1]

[1]

1

(ii)	State and explain what happens to the forces A and B if the person that applies force B moves his hands along the handle towards the middle of the lawn mower.						
	[2]						
	[Total 6 marks]						

3. The figure below shows a uniform rectangular beam supported by two straps. The beam is in equilibrium.

The weight of the beam is 3600 N and its length is 4.0 m. The strap **A** is positioned 0.50 m from one end of the beam and the strap **B** is positioned 1.0 m from the other end.

- (i) **1** Use the principle of moments to show that the upward force *X* at strap A is 1440 N.
 - 2 Hence determine the force Y at the strap **B**.

(ii) Discuss whether the forces *X* and *Y* provide a couple.

[2]

[2]

	(iii)	The area of strap A in contact with Calculate the average pressure exe	the underside of the beam is 2.3×10^{-2} erted on the beam by strap A .	m ² .
		pressure =	unit	[3]
				[Total 9 marks]
4.	Defi	ine the <i>newton</i> .		
				 [Total 1 mark]
5.		ar of mass 1380 kg, travelling at 31.1 2 m. Calculate	$\mathrm{m}\ \mathrm{s}^{-1}$, is brought to rest by the brakes in	1
	(i)	the initial kinetic energy of the car		
			kinetic energy =	J [3]
	(ii)	the average deceleration of the car		
			deceleration = m s	2 [2]

	(iii) the average braking force.	
	braking force =	N [2] [Total 7 marks]
6.	Describe in terms of the forces acting on the driver how wearing a seat belt and an airbag in a car can help to protect the driver from injury in a head on collision	i.
		[Total 4 marks
7.	State two factors that affect the braking distance of a car. Describe how each fa affects the braking distance.	ctor
		 [Total 4 marks]

8. Describe how Global Positioning System (GPS) is used to locate the position of a car on the Earth's surface.

In your answer, you should use appropriate technical terms, spelled correctly.	
[Total 4 ma	rksj

9. The figure below shows two masses **A** and **B** tied to the ends of a length of string. The string passes over a pulley. The mass **A** is held at rest on the floor.

The mass **A** is 1.20 kg and the mass **B** is 1.50 kg.

		weight =N	[1]
(b)	relea	is B is initially at rest at a height of 2.80 m above the floor. Mass A is then used. Mass B has a constant downward acceleration of 1.09 m s ⁻² . Assume air resistance and the friction between the pulley and the string are gible.	
	(i)	In terms of forces, explain why the acceleration of the mass ${\bf B}$ is less than the acceleration of free fall g .	
			[1]
	(ii)	Calculate the time taken for the mass B to fall 1.40 m.	
		time = s	[3]
	(iii)	Calculate the velocity of mass B after falling 1.40 m.	
		velocity = m s ⁻¹	[2]

(a) Calculate the weight of mass **B**.

(iv) Mass **B** hits the floor at a speed of 2.47 m s⁻¹. It **rebounds** with a speed of 1.50 m s^{-1} . The time of contact with the floor is $3.0 \times 10^{-2} \text{ s}$. Calculate the magnitude of the average acceleration of mass **B** during its impact with the floor.

acceleration =
$$\,$$
 m s⁻² [2] [Total 9 marks]

10. State why the equation 'F = ma' cannot be applied to particles travelling at speeds very close to the speed of light.

[Total 1 mark]

11. The figure below shows a ship **S** being pulled by two tug-boats.

The ship is travelling at a constant velocity. The tensions in the cables and the angles made by these cables to the direction in which the ship travels are shown in the figure above.

(i) Draw a vector triangle and determine the resultant force provided by the two cables.

[3]

(ii) State the value of the drag force acting on the ship **S**. Explain your answer.

[2]

[Total 5 marks]

12. Describe an experiment to determine the centre of gravity of the metal plate shown in the figure below.

.....

	[Total 3 marks]

13. The figure below shows the horizontal forces acting on a car of mass 900 kg when it is travelling at a particular velocity on a level road.

The total forward force between the tyres and the road is 200 N and the air resistance (drag) is 80 N.

(i) Calculate the acceleration of the car.

acceleration = m s	s^{-2}
--------------------	----------

[2]

(ii)	Explain why we cannot use the equation $v = u + at$ to predict the velocity of the car at a later time even when the forward force is constant.			
		[1]		
	[Total	3 marks		

Questions on Forces – Mark Scheme

1. (i) Expected answer:

'For equilibrium of an object the sum of clockwise moments about a point = sum of anticlockwise moments about the same point.'

clockwise moment(s) = anticlockwise moment(s)

Note: The term 'clockwise' to be included and spelled correctly

to gain the M1 mark

Note: 'net moment = 0' is equivalent to the M1 mark

M1

Reference to one of the moments taken about a \underline{point} /'equilibrium'/sum (or total or net or Σ) mentioned once

Note: If M1 is lost for incorrect spelling of 'clockwise', then allow this A1 mark

A1

(ii)
$$200 \times 12 = F \times 75$$

C1

F = 32 (N)

Note: Bald answer of 32 (N) scores 2/2 marks

A1

(iii)
$$p = \frac{32}{6.0 \times 10^{-5}}$$

Possible ecf

C1

pressure = 5.3×10^5 (Pa)

Note: Bald answer of 5.3×10^5 (Pa) scores 2/2 marks

A1

(iv) (Pressure is) greater

B1

B1

because the force/F is larger (to provide the same moment)

[8]

2.	(i)	1	The (distribution of the) mass of the lawn mower is not uniform	B1	
		2.	One correct moment about A stated		
			$B \times 110 \text{ or } 350 \times 20$	B1	
			$B = (350 \times 20) / 110 \text{ (moments equated)}$	B1	
			B = 63.6 (N)	A0	
		3.	A = 350 - 63.6 = 286(.4) (N)	A1	
	(ii)	A go	oes down and B goes up	B1	
		prod	ning effect of B is less / B needs greater force to duce the same moment / if distance goes down e needs to go up (to maintain the same turning effect)	В1	[6]
3.	(i)	1	$3600 \times 1.0 = X \times 2.5$	C2	

 $= 62609 \qquad (6.3 \times 10^4)$

unit Pa or N m⁻²

4. (Force is 1 N) when a 1 kg mass has an acceleration of 1 m s

Not: '1 kg and 1 m \underline{s}^{-1} ',
Allow: (1 N =) $\underline{1 \text{ kg}} \times \underline{1 \text{ m s}^{-2}}$

B1 [1]

[9]

5. (i) Kinetic energy =
$$\frac{1}{2}$$
 m v²

$$= \frac{1}{2} 1380 \times (31.1)^2$$
 C1

$$= 667375 (J) (667 kJ)$$
 A1

$$6.7 \times 10^5 \, (J)$$

(ii)
$$v^2 = u^2 + 2as$$
 C1

$$0 = (31.1)^2 + 2 \times a \times 48.2$$

$$a = 10.0(3) \text{ (m s}^{-2})$$

(iii)
$$F = ma$$
 or $work = force \times distance$

$$= 1380 \times 10.03 \qquad F = 667375 / 48.2 \qquad A1$$

$$= 13800 (13846) (N)$$
 $= 13800 (13846) (N)$

[7]

6. Four from:

Prevents the driver from hitting the steering wheel / windscreen Deflates quickly to prevent whiplash Increases the time/distance to stop Decreases the (impact) force on the driver Much wider area of the bag reduces the pressure

 $B1 \times 4$

[4]

7. Any two factors from:

speed, mass, condition of tyres, condition of brakes, condition of road, gradient of road

Allow: KE if neither mass nor speed is mentioned.

B1×2

For each factor, correct description of how braking distance is affected

E.g:

- Greater speed means greater distance
 Or distance ∞ speed² (ora)
- Greater mass means greater distance Or distance ∞ mass (ora)
- Worn tyres / brakes implies less friction therefore greater distance (ora)
- Wet / slippery / icy road means less friction therefore greater distance (ora)
- Uphill means shorter distance (ora)

For description marks, reference to 'distance' instead of 'braking distance' is fine

For 1st bullet point allow reference to kinetic energy

Allow: 'more' or 'longer' instead of 'greater' when referring to distance

Do not allow 'grip' for friction for 3rd and 4th bullet points

 $B1 \times 2$

[4]

8. 1. (Several) satellites used

B1

2. Distance from (each) satellite is determined

B1

3. Position / distance is determined using c / speed of e.m waves / radio waves / microwaves and delay time (wtte)

В1

4. Trilateration is used to locate the position of the car

Or position of car is where circles / spheres cross (wtte)

Note: The term 'satellite(s)' to be included and spelled correctly, on all occasions, to gain this first (or second) B1 mark (Deduct this mark only <u>once</u>.)

Do not allow this 4th mark for just a diagram of intersecting spheres / circles

B1

[4]

9. (a)
$$W = mg$$

Allow: Use of 9.8 (
$$m s^{-2}$$
)

weight =
$$1.50 \times 9.81 = 14.72$$
 (N) or 14.7 (N) or 15 (N)

Allow: Bald 15 (N); but **not** $1.50 \times 10 = 15(N)$

Note: Must have reference to force

(ii)
$$s = ut + \frac{1}{2}at^2$$
 and $u = 0$

C1

$$1.40 = \frac{1}{2} \times 1.09 \times t^2$$

Allow: 2 marks for 1.75/1.09' if answer from (iii) is used

C1

$$t = 1.60$$
 (s)

Allow: 2 sf answer

Allow: 2 marks if 2.80 m is used; time = 2.27 (s)

A1

(iii)
$$v^2 = 2 \times 1.09 \times 1.40 / v = 0 + 1.09 \times 1.60$$

Possible ecf

C1

$$v = 1.75 \text{ (m s}^{-1}) / v = 1.74 \text{ (m s}^{-1})$$

Allow: 1.7 or 1.8 (m s⁻¹)

A1

B1

B1

(iv) change in velocity =
$$2.47 + 1.50$$
 (= 3.97 m s^{-1})
Ignore sign for change in velocity

C1

acceleration =
$$\frac{3.97}{0.030}$$

acceleration = $132 \text{ (m s}^{-2}\text{)}$

Allow: $130 \text{ (m s}^{-2})$

Special case:

$$acceleration = \frac{2.47 - 1.50}{0.030}$$
 or 32 (m s⁻²) scores 1 mark

A1

10. The <u>mass</u> of particles increases (at its speed gets closer to the speed of light)

Not: 'weight of particle increases' **Not**: 'mass changes / different'

B1

[1]

[9]

11. (i) Correct vector triangle drawn

B1

Note:

Expect at least one 'label' on the sketch, eg: 2.14, 1.5, 90°. The 'orientation' of the triangle is not important. The directions of all three arrows are required

$$(resultant force)^2 = 2.14^2 + 1.50^2$$

C1

(resultant force) = 261 (kn)

Allow: 2 sf answer of 2.6 (kN)

Allow a scale drawing; 2 marks if answer is within ± 0.1 kN and 1 mark if ± 0.2 kN

Alternative for the C1 A1 marks:

1.50cos(55) or 2.14cos(35) C1

 $resultant \, force = 1.50 cos(55) + 2.14 cos(35)$

resultant force = 2.61 (kN) A1

A1