Questions on Forces

1. The figure below shows a kitchen cupboard securely mounted to a vertical wall. The cupboard rests on a support at A.

The total weight of the cupboard and its contents is 200 N . The line of action of its weight is at a distance of 12 cm from \mathbf{A}. The screw securing the cupboard to the wall is at a vertical distance of 75 cm from \mathbf{A}.
(i) State the principle of moments.

In your answer, you should use appropriate technical terms, spelled correctly.
\qquad
\qquad
\qquad
(ii) The direction of the force F provided by the screw on the cupboard is horizontal as shown in the figure above. Take moments about A. Determine the value of F.
F = ... N
(iii) The cross-sectional area under the head of the screw in contact with the cupboard is $6.0 \times 10^{-5} \mathrm{~m}^{2}$. Calculate the pressure on the cupboard under the screw head.
pressure = ...Pa
(iv) State and explain how your answer to (iii) would change, if at all, if the same screw was secured much closer to \mathbf{A}.
\qquad
\qquad
\qquad
2. The figure below shows a lawn mower which is carried by two people.

(i) The two people apply forces \boldsymbol{A} and \boldsymbol{B} at each end of the lawn mower. The weight of the lawn mower is 350 N .

1 Explain why the weight of the lawn mower does not act in the middle of the lawn mower, that is 55 cm from each end.
\qquad
\qquad

2 Use the principle of moments to show that the force \boldsymbol{B} is 64 N .

3 Determine the force \boldsymbol{A}.

$$
A=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots
$$

(ii) State and explain what happens to the forces \boldsymbol{A} and \boldsymbol{B} if the person that applies force \boldsymbol{B} moves his hands along the handle towards the middle of the lawn mower.
\qquad
\qquad
\qquad
\qquad
3. The figure below shows a uniform rectangular beam supported by two straps. The beam is in equilibrium.

The weight of the beam is 3600 N and its length is 4.0 m . The strap \mathbf{A} is positioned 0.50 m from one end of the beam and the strap \mathbf{B} is positioned 1.0 m from the other end.
(i) 1 Use the principle of moments to show that the upward force X at strap A is 1440 N.

2 Hence determine the force Y at the strap \mathbf{B}.
force = N
(ii) Discuss whether the forces X and Y provide a couple.
\qquad
\qquad
\qquad
\qquad
(iii) The area of strap \mathbf{A} in contact with the underside of the beam is $2.3 \times 10^{-2} \mathrm{~m}^{2}$. Calculate the average pressure exerted on the beam by strap \mathbf{A}.
pressure = \qquad unit \qquad
4. Define the newton.
\qquad
\qquad
5. A car of mass 1380 kg , travelling at $31.1 \mathrm{~m} \mathrm{~s}^{-1}$, is brought to rest by the brakes in 48.2 m. Calculate
(i) the initial kinetic energy of the car
kinetic energy = J
(ii) the average deceleration of the car
deceleration =
\qquad $\mathrm{m} \mathrm{s}^{-2}$
(iii) the average braking force.

> braking force = N
6. Describe in terms of the forces acting on the driver how wearing a seat belt and having an airbag in a car can help to protect the driver from injury in a head on collision.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
7. State two factors that affect the braking distance of a car. Describe how each factor affects the braking distance.
\qquad
\qquad
\qquad
\qquad
\qquad
8. Describe how Global Positioning System (GPS) is used to locate the position of a car on the Earth's surface.

In your answer, you should use appropriate technical terms, spelled correctly.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
9. The figure below shows two masses \mathbf{A} and \mathbf{B} tied to the ends of a length of string. The string passes over a pulley. The mass \mathbf{A} is held at rest on the floor.

The mass \mathbf{A} is 1.20 kg and the mass \mathbf{B} is 1.50 kg .
(a) Calculate the weight of mass \mathbf{B}.
weight $=$.. N
(b) Mass \mathbf{B} is initially at rest at a height of 2.80 m above the floor. Mass \mathbf{A} is then released. Mass B has a constant downward acceleration of $1.09 \mathrm{~m} \mathrm{~s}^{-2}$. Assume that air resistance and the friction between the pulley and the string are negligible.
(i) In terms of forces, explain why the acceleration of the mass \mathbf{B} is less than the acceleration of free fall g.
\qquad
\qquad
(ii) Calculate the time taken for the mass \mathbf{B} to fall 1.40 m .
time =
\qquad s
(iii) Calculate the velocity of mass B after falling 1.40 m .

$$
\text { velocity = ... } \mathrm{m} \mathrm{~s}^{-1}
$$

(iv) Mass B hits the floor at a speed of $2.47 \mathrm{~m} \mathrm{~s}^{-1}$. It rebounds with a speed of $1.50 \mathrm{~m} \mathrm{~s}^{-1}$. The time of contact with the floor is $3.0 \times 10^{-2} \mathrm{~s}$. Calculate the magnitude of the average acceleration of mass \mathbf{B} during its impact with the floor.

```
acceleration =
```

\qquad

``` \(\mathrm{m} \mathrm{s}^{-2}\)
```

10. State why the equation ' $F=m a$ ' cannot be applied to particles travelling at speeds very close to the speed of light.
\qquad
\qquad
11. The figure below shows a ship \mathbf{S} being pulled by two tug-boats.

The ship is travelling at a constant velocity. The tensions in the cables and the angles made by these cables to the direction in which the ship travels are shown in the figure above.
(i) Draw a vector triangle and determine the resultant force provided by the two cables.
resultant force = ... kN
(ii) State the value of the drag force acting on the ship \mathbf{S}. Explain your answer.
\qquad
\qquad
\qquad
12. Describe an experiment to determine the centre of gravity of the metal plate shown in the figure below.

\qquad
\qquad
\qquad
\qquad
13. The figure below shows the horizontal forces acting on a car of mass 900 kg when it is travelling at a particular velocity on a level road.

The total forward force between the tyres and the road is 200 N and the air resistance (drag) is 80 N .
(i) Calculate the acceleration of the car.
acceleration $=$
$\mathrm{m} \mathrm{s}^{-2}$
(ii) Explain why we cannot use the equation $v=u+a t$ to predict the velocity of the car at a later time even when the forward force is constant.
\qquad
\qquad

Questions on Forces - Mark Scheme

1. (i) Expected answer:
'For equilibrium of an object the sum of clockwise
moments about a point $=$ sum of anticlockwise
moments about the same point.
clockwise moment(s) $=$ anticlockwise moment(s)
Note: The term 'clockwise' to be included and spelled correctly to gain the M1 mark
Note: 'net moment $=0$ ' is equivalent to the M1 mark
Reference to one of the moments taken about a point/'equilibrium'/sum (or total or net or \sum) mentioned once

Note: If M1 is lost for incorrect spelling of 'clockwise', then allow this Al mark
(ii) $200 \times 12=F \times 75$
$F=32(\mathrm{~N})$
Note: Bald answer of $32(N)$ scores $2 / 2$ marks
(iii) $p=\frac{32}{6.0 \times 10^{-5}}$

Possible ecf
pressure $=5.3 \times 10^{5}(\mathrm{~Pa})$
Note: Bald answer of $5.3 \times 10^{5}(\mathrm{~Pa})$ scores $2 / 2$ marks
(iv) (Pressure is) greater
because the force $/ F$ is larger (to provide the same moment)
2. (i) $\mathbf{1}$ The (distribution of the) mass of the lawn mower is not uniform
2. One correct moment about A stated

B $\times 110$ or $350 \times 20 \quad$ B1
$B=(350 \times 20) / 110($ moments equated $) \quad$ B1
$\mathrm{B}=63.6(\mathrm{~N}) \quad \mathrm{A} 0$
3. $\mathrm{A}=350-63.6=286(.4)(\mathrm{N}) \quad \mathrm{A} 1$
(ii) A goes down and B goes up $\quad \mathrm{B} 1$

Turning effect of B is less / B needs greater force to produce the same moment / if distance goes down force needs to go up (to maintain the same turning effect) B1
3. (i) $13600 \times 1.0=\mathrm{X} \times 2.5$

C2
one mark for one correct moment, one mark for the second correct moment and equated to first moment
$2 \quad \mathrm{X}=1440(\mathrm{~N})$ C1
$\mathrm{Y}=3600-1440 \quad$ or $3600 \times 1.5=\mathrm{Y} \times 2.5$ A1

$$
=2160(\mathrm{~N}) \quad \text { B1 }
$$

(ii) Not a couple as forces are not equal B1 and not in opposite directions / the forces are in the same direction
(iii) $\mathrm{P}=\mathrm{F} / \mathrm{A} \quad \mathrm{B} 1$

$$
\begin{aligned}
& =1440 / 2.3 \times 10^{-2} \\
& =62609 \quad\left(6.3 \times 10^{4}\right)
\end{aligned}
$$

B1

$$
\text { unit } \mathrm{Pa} \text { or } \mathrm{N} \mathrm{~m}^{-2}
$$

[9]

4. (Force is 1 N) when a $\mathbf{1 \mathbf { k g } \text { mass has an }}$ acceleration of $\mathbf{1 \mathbf { m ~ s }}{ }^{-}$

Not: ' 1 kg and $1 \mathrm{~m} \underline{\mathrm{~s}^{-1}}$,
Allow: $(1 N=) \underline{\mathbf{1 k g} \times 1 \mathrm{~m} \mathrm{~s}^{-2}}$
5. (i) Kinetic energy $=1 / 2 m v^{2}$

$$
\begin{aligned}
= & 1 / 21380 \times(31.1)^{2} \\
= & 667375(\mathrm{~J})(667 \mathrm{~kJ}) \\
& 6.7 \times 10^{5}(\mathrm{~J})
\end{aligned}
$$

(ii) $\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}$

$$
0=(31.1)^{2}+2 \times \mathrm{a} \times 48.2
$$

$$
\begin{equation*}
a=10.0(3)\left(\mathrm{m} \mathrm{~s}^{-2}\right) \tag{C1}
\end{equation*}
$$

(iii) $\mathrm{F}=\mathrm{ma}$

$$
\text { or work }=\text { force } \times \text { distance }
$$

$$
\begin{array}{rlrl}
= & 1380 \times 10.03 & \mathrm{~F}=667375 / 48.2 \\
& =13800(13846)(\mathrm{N}) & & =13800(13846)(\mathrm{N})
\end{array}
$$

6. Four from:

Prevents the driver from hitting the steering wheel / windscreen
Deflates quickly to prevent whiplash
Increases the time/distance to stop
Decreases the (impact) force on the driver
$\begin{array}{ll}\text { Much wider area of the bag reduces the pressure } & \text { B1 } \times 4\end{array}$
7. Any two factors from:
speed, mass, condition of tyres, condition of brakes, condition of road, gradient of road

Allow: KE if neither mass nor speed is mentioned.
B1×2

For each factor, correct description of how braking distance is affected
E.g:

- Greater speed means greater distance Or distance ∞ speed 2 (ora)
- Greater mass means greater distance Or distance ∞ mass (ora)
- Worn tyres / brakes implies less friction therefore greater distance (ora)
- Wet / slippery / icy road means less friction therefore greater distance (ora)
- Uphill means shorter distance (ora)

For description marks, reference to 'distance' instead of 'braking distance' is fine

For $1^{\text {st }}$ bullet point allow reference to kinetic energy
Allow: 'more' or 'longer' instead of 'greater' when referring to distance

Do not allow 'grip' for friction for $3^{\text {rd }}$ and $4^{\text {th }}$ bullet points
8. 1. (Several) satellites used
2. Distance from (each) satellite is determined
3. Position / distance is determined using c/speed of e.m waves / radio waves / microwaves and delay time (wtte)
4. Trilateration is used to locate the position of the car
Or position of car is where circles / spheres cross (wtte)

Note: The term 'satellite(s)' to be included and spelled correctly, on all occasions, to gain this first (or second) B1 mark (Deduct this mark only once.)

Do not allow this $4^{\text {th }}$ mark for just a diagram of intersecting spheres / circles
9. (a) $W=m g$

Allow: Use of $9.8\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$
weight $=1.50 \times 9.81=14.72(\mathrm{~N})$ or $14.7(\mathrm{~N})$ or $15(\mathrm{~N})$
Allow: Bald $15(\mathrm{~N})$; but not ' $1.50 \times 10=15(\mathrm{~N})$ '
(b) (i) $\quad \underline{N e t} /$ resultant force $($ on $\mathbf{B})$ is less / (net) force (on $\mathbf{B})$ is less than its weight / there is tension (in the string) / there is a vertical / upward / opposing force (on B)

Note: Must have reference to force
(ii) $s=u t+\frac{1}{2} a t^{2}$ and $u=0$

$$
1.40=\frac{1}{2} \times 1.09 \times t^{2}
$$

Allow: 2 marks for 1.75/1.09' if answer from (iii) is used

$$
t=1.60(\mathrm{~s})
$$

Allow: 2 sf answer
Allow: 2 marks if $\underline{\mathbf{2 . 8 0} \mathbf{~ m}}$ is used; time $=2.27(\mathrm{~s})$
(iii) $v^{2}=2 \times 1.09 \times 1.40 / v=0+1.09 \times 1.60$

Possible ecf

$$
\begin{gathered}
v=1.75\left(\mathrm{~m} \mathrm{~s}^{-1}\right) / v=1.74\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\
\text { Allow: } 1.7 \text { or } 1.8\left(\mathrm{~m} \mathrm{~s}^{-1}\right)
\end{gathered}
$$

(iv) change in velocity $=2.47+1.50\left(=3.97 \mathrm{~m} \mathrm{~s}^{-1}\right)$

Ignore sign for change in velocity

$$
\begin{aligned}
& \text { acceleration }=\frac{3.97}{0.030} \\
& \text { acceleration }=132\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \\
& \quad \text { Allow: } 130\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \\
& \text { Special case: } \\
& \quad \text { acceleration }=\frac{2.47-1.50}{0.030} \text { or } 32\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \text { scores } 1 \text { mark }
\end{aligned}
$$

10. The mass of particles increases (at its speed gets closer to the speed of light)

Not: 'weight of particle increases'
Not: 'mass changes / different'
11. (i) Correct vector triangle drawn
$2.14(\mathrm{kN})$

Note:

Expect at least one 'label' on the sketch, eg: 2.14, 1.5, 90°.
The 'orientation' of the triangle is not important.
The directions of all three arrows are required
$(\text { resultant force })^{2}=2.14^{2}+1.50^{2}$
$($ resultant force $)=261(\mathrm{kn})$
Allow: 2 sf answer of $2.6(\mathrm{kN})$
Allow a scale drawing; 2 marks if answer is within $\pm 0.1 \mathrm{kN}$ and 1 mark if $\pm 0.2 \mathrm{kN}$
Alternative for the C1 Al marks:
$1.50 \cos (55)$ or $2.14 \cos (35) \quad C 1$
resultant force $=1.50 \cos (55)+2.14 \cos (35)$
resultant force $=2.61(\mathrm{kN}) \quad$ Al

